\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{NescafeAbusive32 (nescafeabusive32)} \pdfinfo{ /Title (gr-12-structure-and-properties-of-matter.pdf) /Creator (Cheatography) /Author (NescafeAbusive32 (nescafeabusive32)) /Subject (Gr. 12 Structure and Properties of Matter Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{113ABF} \definecolor{LightBackground}{HTML}{F0F2FB} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Gr. 12 Structure and Properties of Matter Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{NescafeAbusive32 (nescafeabusive32)} via \textcolor{DarkBackground}{\uline{cheatography.com/53385/cs/14446/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}NescafeAbusive32 (nescafeabusive32) \\ \uline{cheatography.com/nescafeabusive32} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 23rd January, 2018.\\ Updated 25th January, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The History of the Atom}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Democritus}}\{\{bb\}\} (300 B.C.)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}First person to conceive the idea of {\bf{tiny, indivisible particles}} called {\bf{atoms}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}{\bf{John Dalton}} (1805) - The \{\{popup="http://2011period6group4.wikispaces.com/file/view/Dalton\%27s\_Model.jpg/168477035/Dalton\%27s\_Model.jpg"\}\}billiard ball model\{\{/popup\}\}} \tn % Row Count 7 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Pure substances}} are made up of atoms} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Atoms of the {\bf{same element}} are {\bf{exactly alike}}} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Atoms {\bf{cannot}} be {\bf{created}}, {\bf{destroyed}}, or {\bf{divided}} into smaller particles} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}Compounds are formed by {\bf{joining 2 or more elements}}} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}{\bf{William Crookes}} (1875) - Discovery of the electron} \tn % Row Count 16 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Created an {\bf{electric discharge tube}} (a {\bf{cathode ray tube}}) with a screen and magnet} \tn % Row Count 18 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Discovered the bar magnet could deflect/move the cathode rays (they have a {\bf{charge}})} \tn % Row Count 20 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}If he added a paddle wheel inside the tube, it moved (the rays had {\bf{mass}})} \tn % Row Count 22 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}{\bf{J.J. Thomson}} (1897) - The \{\{popup="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1989/2017/06/13230859/3q9mbr7wqpwuow0au86e.png"\}\}raisin bun model\{\{/popup\}\}} \tn % Row Count 26 (+ 4) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Using Crooke's cathode ray tube, determined rays were {\bf{made up of negatively charged particles}} called {\bf{electrons}}} \tn % Row Count 29 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}Electrons were {\bf{2000x lighter}} than hydrogen, the lightest known element} \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The History of the Atom (cont)}} \tn % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}{\bf{Ernest Rutherford}} (1903) - The \{\{popup="https://media1.britannica.com/eb-media/76/22476-004-9B6970F9.jpg"\}\}beehive model\{\{/popup\}\}} \tn % Row Count 3 (+ 3) % Row 15 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Conducted the {\bf{gold foil experiment}}; if the atom was like Thomson proposed, any alpha particles sent through it would {\bf{pass straight through}}} \tn % Row Count 6 (+ 3) % Row 16 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Most of the particles went through, but {\bf{some were scattered}}} \tn % Row Count 8 (+ 2) % Row 17 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Determined that atoms were {\bf{mostly empty space}}, with a {\bf{small, dense, positively charged nucleus}} in the centre with e¯ scattered around it} \tn % Row Count 11 (+ 3) % Row 18 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}{\bf{1932}} - determined with James Chadwick that the mass of the nucleus {\bf{did not equal the mass of the protons only}}, i.e. electrically neutral {\bf{neutrons}}} \tn % Row Count 15 (+ 4) % Row 19 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bb\}\}{\bf{Niels Bohr}} (1913) - The \{\{popup="https://media1.britannica.com/eb-media/09/149209-004-E4AA2D63.jpg"\}\}planetary model\{\{/popup\}\}} \tn % Row Count 18 (+ 3) % Row 20 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Proposed that electrons are {\bf{not allowed to orbit anywhere}}, but rather they occupy certain {\bf{defined (fixed) orbits}}} \tn % Row Count 21 (+ 3) % Row 21 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Based off experiments with hydrogen atoms and spectroscopes} \tn % Row Count 23 (+ 2) % Row 22 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Electrons can {\bf{jump to higher orbits}} when they are given energy in {\bf{quantized}} amounts ({\bf{no partial amounts}}), usually in the form of {\bf{photons}} (light particles)} \tn % Row Count 27 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Quantum Mechanical Model of the Atom}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Louis de Broglie}} (1924) proposed that if light waves properties of particles, then {\bf{particles can have properties of waves}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Erwin Schrodinger}} (1933) realized that a {\bf{wave theory}} and mathematical equations were needed to {\bf{explain atoms with more than 2 e\textasciicircum{}\_\textasciicircum{}}}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Schrodinger's Wave Function}}} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}Contains 3 variables called {\bf{quantum numbers}} ({\emph{n}}, {\emph{l`n`}}, {\emph{m`l`}}) to help determine a {\bf{region in space}} where the electron spends {\bf{90\%}} of its time (the {\bf{atomic orbital}})} \tn % Row Count 11 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A fourth number ({\bf{{\emph{m`s`}}}}) was added so that all characteristics of atoms could be explained} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Heisenberg's Uncertainty Principle:}} it is {\bf{impossible}} to know both the {\bf{exact location and speed}} of an e\textasciicircum{}\_\textasciicircum{} at a given time} \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Quantum Theory and Chemical Bonding}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Valence Bond Theory:}} atomic orbitals of one atom can overlap with atomic orbitals of another atom to {\bf{share a common region of space}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Molecular Orbital Theory:}} when orbitals overlap, they {\bf{combine to form new orbitals}} called {\bf{molecular orbitals}} ({\bf{hybridization}}); the {\bf{greater}} the overlap, the {\bf{more stable}} the bond} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Double/Triple Bonds:}} {\bf{Sigma (σ)}} bonds ({\bf{end-to-end}} overlap of orbitals) and {\bf{pi (π)}} bonds ("{\bf{sideways}}" orbitals—usually {\emph{p}} orbitals—overlap {\bf{above and below}} the plane of the bond)} \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Single bond}} = 1 σ bond; {\bf{Double bond}} = 1 σ bond + 1 π bond; {\bf{Triple bond}} = 1 σ bond + 2 π bonds} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.12779 cm} p{0.45947 cm} x{1.00248 cm} x{1.58726 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Quantum Numbers}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Quantum number}} & {\bf{Symbol}} & {\bf{Meaning}} & {\bf{Possibilities}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Principal quantum number & {\emph{n}} & Energy level & {\emph{n}} Є ℕ (any whole number \textgreater{} 0) \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} Secondary quantum number & {\emph{l}} & Shape of orbital & 0 ≤ {\emph{l}} ≤ {\emph{n}} - 1 \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} Magnetic quantum number & {\emph{m`l`}} & \seqsplit{Direction/orientation} & -{\emph{l}} ≤ -{\emph{m`l`}} ≤ {\emph{l}} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} Spin quantum number & {\emph{m`s`}} & Spin & ±`\textasciicircum{}1\textasciicircum{}`/`2` \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.62655 cm} p{0.66832 cm} x{1.54549 cm} x{1.33664 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{Shape of Electron Orbitals ({\emph{l}} and {\emph{m`l`}})}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Value of {\emph{l}}}} & {\bf{Symbol}} & {\bf{Shape}} & {\bf{\# of suborbitals ({\emph{m`l`}})}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 0 & {\emph{s}} \seqsplit{(sharp)} & \{\{popup="https://upload.wikimedia.org/wikipedia/commons/4/4c/S\_Orbital.png"\}\}Sphere\{\{/popup\}\} & 1 ({\emph{m`l`}} = 0) \tn % Row Count 10 (+ 7) % Row 2 \SetRowColor{LightBackground} 1 & {\emph{p}} \seqsplit{(principal)} & \{\{popup="http://www.devtome.com/lib/exe/fetch.php?media=porbital.gif"\}\}Dumbbell\{\{/popup\}\} & 3 ({\emph{m`l`}} = -1, 0, 1) \tn % Row Count 17 (+ 7) % Row 3 \SetRowColor{white} 2 & {\emph{d}} \seqsplit{(diffuse)} & \{\{popup="https://study.com/cimages/multimages/16/d\_orbitals1.png"\}\}Flower/petal\{\{/popup\}\} & 5 ({\emph{m`l`}} = -2, -1, 0, 1, 2) \tn % Row Count 24 (+ 7) % Row 4 \SetRowColor{LightBackground} 3 & {\emph{f}} \seqsplit{(fundamental)} & \{\{popup="http://2.bp.blogspot.com/-fkjR92JIaRc/Ugw2WBdvY\_I/AAAAAAAAATU/cbGXiMxcmRQ/s1600/1.jpg"\}\}Double flower\{\{/popup\}\} & 7 ({\emph{m`l`}} = -3, -2, -1, 0, 1, 2, 3) \tn % Row Count 33 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{VSEPR Theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{VSEPR:}} {\bf{V}}alence {\bf{S}}hell {\bf{E}}lectron {\bf{P}}air {\bf{R}}epulsion} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Helps determine the structure around an atom by {\bf{minimizing the repulsive force}} between e¯ pairs} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Bonded and lone pair e¯ position themselves {\bf{as far away as possible}} from each other} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Lone pairs of e¯ on a central atom {\bf{repels a little more}} than bonding pairs; they {\bf{push the bonding pairs closer together}}} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.04425 cm} x{1.16956 cm} x{0.8354 cm} x{1.12779 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{5.377cm}}{\bf\textcolor{white}{VSEPR Molecule Shapes}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{\# of e¯ groups}} & {\bf{e¯ configuration}} & {\bf{AXE formula}} & {\bf{Molecular shape}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 2 & Linear & AX`2` & Linear \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} 3 & Trigonal planar & AX`3` & Trigonal planar \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} & & AX`2`E & Bent \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} 4 & \seqsplit{Tetrahedral} & AX`4` & \seqsplit{Tetrahedral} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} & & AX`3`E & Trigonal pyramidal \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} & & \seqsplit{AX`2`E`2`} & Bent \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} 5 & Trigonal \seqsplit{bipyramidal} & AX`5` & Trigonal \seqsplit{bipyramidal} \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} & & AX`4`E & See-saw \tn % Row Count 15 (+ 1) % Row 9 \SetRowColor{white} & & \seqsplit{AX`3`E`2`} & T-shape \tn % Row Count 17 (+ 2) % Row 10 \SetRowColor{LightBackground} & & \seqsplit{AX`2`E`3`} & Linear \tn % Row Count 19 (+ 2) % Row 11 \SetRowColor{white} 6 & Octahedral & AX`6` & \seqsplit{Octahedral} \tn % Row Count 20 (+ 1) % Row 12 \SetRowColor{LightBackground} & & AX`5`E & Square pyramidal \tn % Row Count 22 (+ 2) % Row 13 \SetRowColor{white} & & \seqsplit{AX`4`E`2`} & Square planar \tn % Row Count 24 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}----} \SetRowColor{LightBackground} \mymulticolumn{4}{x{5.377cm}}{See a \{\{popup="https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/1941/2017/05/30162640/vsepr-geometries.png"\}\}visual table\{\{/popup\}\} here.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bond vs Molecular Polarity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Bond Polarity:}} the even/uneven distribution of e¯ across {\bf{one bond}} (can be single/double/triple); determined by {\bf{ΔEN}} (difference in electronegativity)} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Molecular Polarity:}} the even/uneven distribution of e¯ across an {\bf{entire molecule}}; determine many properties of the substance} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3 important factors to molecular polarity: {\bf{presence/absence of polar bonds}}, {\bf{shape}} of the molecule, and {\bf{presence/absence of lone e¯ pairs}}} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{It is possible to have a non-polar molecule with polar bonds within, if the shape cancels out any vectors created by the bonds.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.63781 cm} x{2.33919 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Ionic Crystals}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Solids in which {\bf{positive and negative ions}} are arranged in a {\bf{crystal lattice}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Boiling/melting point}} & High \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Malleability}} & Brittle \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} {\bf{Conductivity}} & Poor as solid, high as solution \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Solubility in water}} & Very soluble \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} {\bf{Hardness}} & Very hard (very \seqsplit{scratch-resistant)} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{Types of forces acting on molecule}} & Ionic bonds \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Examples:}} NaCl (table salt), K`3`PO`4` (potassium phosphate), CuSO`4` (copper (II) sulfate)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.08574 cm} x{1.89126 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Metallic Crystals}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Solids composed of {\bf{individual molecules}} held together by {\bf{intermolecular forces}} ({\bf{IMFs}}); "{\bf{neutral}}" molecules that form {\bf{complex crystal lattice}} in solid state} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Boiling/melting point}} & Vary widely \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Malleability}} & Ductile (very flexible) \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} {\bf{Conductivity}} & High as a solid \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{Solubility in water}} & Slightly soluble \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} {\bf{Hardness}} & Varied \tn % Row Count 12 (+ 1) % Row 6 \SetRowColor{LightBackground} {\bf{Types of forces acting on molecule}} & Metallic bonds \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Examples:}} Au (gold), Ag (silver), Ni (nickel), Fe (iron), Co (cobalt), Cu (copper), Zn (zinc), Cr (chromium)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ionic vs Metallic Bonds}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Ionic Bond:}} Highly electropositive ion ({\bf{cation}}) {\bf{gives up extra e¯}} and gives them to highly electronegative ion ({\bf{anion}}), then bond through {\bf{very strong electrostatic attraction}} between the two ions, creating an {\bf{ionic crystal}} structure} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Metallic Bond:}} Many metal atoms shed a {\bf{"sea" of e¯}} that engulf the metal ions (e¯ are {\bf{delocalized}}); pulled from all directions, the metal ions can barely move and {\bf{pack tightly together}} in crystalline structures} \tn % Row Count 11 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Both ionic and metallic crystals take an immense amount of energy to break the bonds between ions; however, since the metal ions are inside the "sea" of e¯, metallic crystals are {\bf{much more malleable}} than normal ionic crystals (the e¯ mitigate the effect of shifting and sudden repulsion between the ions).} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.43873 cm} x{2.53827 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Molecular Crystals}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Solids composed of {\bf{individual molecules}} held together by {\bf{intermolecular forces}} ({\bf{IMFs}}); "{\bf{neutral}}" molecules that form {\bf{complex crystal lattice}} in solid state} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Boiling/melting point}} & Low \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Malleability}} & N/A \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} {\bf{Conductivity}} & Poor as solids \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{Solubility in water}} & Varied \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} {\bf{Hardness}} & Soft (easy to scratch) \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{Types of forces acting on molecule}} & IMFs - weaker than ionic/metallic bonds \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Examples:}} I`2(s)` (iodine), At`2(s)` (astatine)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.43873 cm} x{2.53827 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Covalent Network Crystals}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Solids in which the atoms {\bf{form covalent bonds}} in an {\bf{interwoven network}}; most contain {\bf{C}} or {\bf{Si atoms}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Boiling/melting point}} & Very high \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Malleability}} & N/A \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} {\bf{Conductivity}} & Poor as solids \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{Solubility in water}} & Varied \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} {\bf{Hardness}} & Extreme hardness or softness \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{Types of forces acting on molecule}} & Covalent bonds (strength increases with more bonds); sometimes IMFs (usually LDF) \tn % Row Count 16 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Examples:}} Diamond, graphite, silicone ({\bf{not}} Si (silicon)), semiconductors, buckyballs, nanotubes} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}