Cheatography

Gr. 12 Structure and Properties of Matter Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14446/

The History of the Atom

Democritus (300 B.C.)

First person to conceive the idea of tiny, indivisible particles called atoms

John Dalton (1805) - The billiard ball model

Pure substances are made up of atoms

Atoms of the same element are exactly alike

Atoms cannot be created, destroyed, or divided into smaller particles

Compounds are formed by joining 2 or more elements

William Crookes (1875) - Discovery of the electron

Created an **electric discharge tube** (a **cathode ray tube**) with a screen and magnet

Discovered the bar magnet could deflect/move the cathode rays (they have a **charge**)

If he added a paddle wheel inside the tube, it moved (the rays had **mass**)

J.J. Thomson (1897) - The raisin bun model

Using Crooke's cathode ray tube, determined rays were made up of negatively charged particles called electrons

Electrons were **2000x lighter** than hydrogen, the lightest known element

Ernest Rutherford (1903) - The beehive model

Conducted the **gold foil experiment**; if the atom was like Thomson proposed, any alpha particles sent through it would **pass straight through**

Most of the particles went through, but some were scattered

Determined that atoms were mostly empty space, with a small, dense, positively charged nucleus in the centre with e⁻ scattered around it

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

The History of the Atom (cont)

1932 - determined with James Chadwick that the mass of the nucleus **did not equal the mass of the protons only**, i.e. electrically neutral **neutrons**

Niels Bohr (1913) - The planetary model

Proposed that electrons are **not allowed to orbit anywhere**, but rather they occupy certain **defined (fixed) orbits**

Based off experiments with hydrogen atoms and spectroscopes

Electrons can jump to higher orbits when they are given energy in quantized amounts (no partial amounts), usually in the form of photons (light particles)

Quantum Mechanical Model of the Atom

Louis de Broglie (1924) proposed that if light waves properties of particles, then particles can have properties of waves

Erwin Schrodinger (1933) realized that a wave theory and mathematical equations were needed to explain atoms with more than 2 e-

Schrodinger's Wave Function

Contains 3 variables called **quantum numbers** (*n*, *l*_n, *m*¹) to help determine a **region in space** where the electron spends **90%** of its time (the **atomic orbital**)

A fourth number (*ms*) was added so that all characteristics of atoms could be explained

Heisenberg's Uncertainty Principle: it is impossible to know both the exact location and speed of an e- at a given time

Published 23rd January, 2018. Last updated 25th January, 2018. Page 1 of 3.

Quantum Theory and Chemical Bonding

Valence Bond Theory: atomic orbitals of one atom can overlap with atomic orbitals of another atom to share a common region of space

Molecular Orbital Theory: when orbitals overlap, they combine to form new orbitals called molecular orbitals (hybridization); the greater the overlap, the more stable the bond

Double/Triple Bonds: Sigma (\sigma) bonds (**end-to-end** overlap of orbitals) and **pi (\pi)** bonds ("**sideways**" orbitals—usually *p* orbitals—overlap **above and below** the plane of the bond)

Single bond = 1 σ bond; Double bond = 1 σ bond + 1 π bond; Triple bond = 1 σ bond + 2 π bonds

Quantum Numbers

Quantum number	Symbol	Meaning	Possib- ilities
Principal quantum number	п	Energy level	$n \in \mathbb{N}$ (any whole number > 0)
Secondary quantum number	1	Shape of orbital	0 ≤ /≤ <i>n</i> - 1
Magnetic quantum number	ml	Direct- ion/or- ientation	-/≤ -m 1 ≤ /
Spin quantum number	ms	Spin	± ¹ /2

Shape of Electron Orbitals (I and mI)			
Value of /	Symbol	Shape	# of suborb- itals (<i>m1</i>)
0	<i>s</i> (sharp)	Sphere	1 (<i>m</i> 1 = 0)

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Gr. 12 Structure and Properties of Matter Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14446/

Shape of Electron Orbitals (I and mI) (cont)			
1	<i>p</i> (princ- ipal)	Dumbbell	3 (<i>m</i> ⊥ = −1, 0, 1)
2	<i>d</i> (diffuse)	Flower/p etal	5 (<i>m</i> 1 = -2, -1, 0, 1, 2)
3	<i>f</i> (funda- mental)	Double flower	7 (<i>m</i> 1 = -3, -2, - 1, 0, 1, 2, 3)

VSEPR Theory

VSEPR: Valence Shell Electron Pair Repulsion

Helps determine the structure around an atom by **minimizing the repulsive force** between e⁻ pairs

Bonded and lone pair e⁻ position

themselves as far away as possible from each other

Lone pairs of e⁻ on a central atom **repels a little more** than bonding pairs; they **push the bonding pairs closer together**

VSEPR Molecule Shapes			
# of e ⁻ groups	e ⁻ config- uration	AXE formula	Molecular shape
2	Linear	AX2	Linear
3	Trigonal planar	AX 3	Trigonal planar
		AX2E	Bent
4	Tetrah- edral	AX4	Tetrah- edral
		AX3E	Trigonal pyramidal
		AX 2 E 2	Bent
5	Trigonal bipyra- midal	AX 5	Trigonal bipyra- midal
		AX4E	See-saw
		AX 3 E 2	T-shape
		AX 2 E 3	Linear
6	Octahedral	AX 6	Octahedral

VSEPR Molecule Shapes (cont)AX5ESquare pyramidalAX4E2Square planar

See a visual table here.

Bond vs Molecular Polarity

Bond Polarity: the even/uneven distribution of e^- across **one bond** (can be single/double/triple); determined by **\Delta EN** (difference in electronegativity)

Molecular Polarity: the even/uneven distribution of e⁻ across an **entire molecule**; determine many properties of the substance

3 important factors to molecular polarity: presence/absence of polar bonds, shape of the molecule, and presence/absence of lone e⁻ pairs

It is possible to have a non-polar molecule with polar bonds within, if the shape cancels out any vectors created by the bonds.

Ionic Crystals		
Solids in which positive and negative ions		
are arranged in a crystal lattice		
Boiling/melting point	High	
Malleability	Brittle	
Conductivity	Poor as solid, high	
	as solution	
Solubility in water	Very soluble	
Hardness	Very hard (very	
	scratch-resistant)	
Types of forces	Ionic bonds	
acting on molecule		
Examples: NaCl (table	salt), K3PO4	

(potassium phosphate), CuSO4 (copper (II) sulfate)

Metallic Crystals

Solids composed of individual molecules held together by intermolecular forces (IMFs); "neutral" molecules that form complex crystal lattice in solid state

Boiling/melting point	Vary widely
Malleability	Ductile (very flexible)
Conductivity	High as a solid
Solubility in water	Slightly soluble
Hardness	Varied
Types of forces acting on molecule	Metallic bonds

Examples: Au (gold), Ag (silver), Ni (nickel), Fe (iron), Co (cobalt), Cu (copper), Zn (zinc), Cr (chromium)

Ionic vs Metallic Bonds

lonic Bond: Highly electropositive ion (cation) gives up extra e⁻ and gives them to highly electronegative ion (anion), then bond through very strong electrostatic attraction between the two ions, creating an ionic crystal structure

Metallic Bond: Many metal atoms shed a "sea" of e⁻ that engulf the metal ions (e⁻ are delocalized); pulled from all directions, the metal ions can barely move and pack tightly together in crystalline structures

Both ionic and metallic crystals take an immense amount of energy to break the bonds between ions; however, since the metal ions are inside the "sea" of e⁻, metallic crystals are **much more malleable** than normal ionic crystals (the e⁻ mitigate the effect of shifting and sudden repulsion between the ions).

By NescafeAbusive32 (nescafeabusive32)

Published 23rd January, 2018. Last updated 25th January, 2018. Page 2 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/nescafeabusive32/

Cheatography

Molecular Crystals

Solids composed of individual molecules held together by intermolecular forces (IMFs); "neutral" molecules that form complex crystal lattice in solid state

Boiling/melting point	Low
Malleability	N/A
Conductivity	Poor as solids
Solubility in water	Varied
Hardness	Soft (easy to scratch)
Types of forces acting on molecule	IMFs - weaker than ionic/metallic bonds
Examples: I2 (s) (iodine), At2 (s) (astatine)	

Covalent Network Crystals

Solids in which the atoms form covalent bonds in an interwoven network ; most		
contain C or	Siatoms	
Boiling/m- elting point	Very high	
Malleability	N/A	
Conduc- tivity	Poor as solids	
Solubility in water	Varied	
Hardness	Extreme hardness or softness	
Types of forces acting on molecule	Covalent bonds (strength increases with more bonds); sometimes IMFs (usually LDF)	
Examples: Di	amond graphita siliaona (not	

Examples: Diamond, graphite, silicone (**not** Si (silicon)), semiconductors, buckyballs, nanotubes

By NescafeAbusive32 (nescafeabusive32)

Published 23rd January, 2018. Last updated 25th January, 2018. Page 3 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/nescafeabusive32/