Gr. 12 Organic Chemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

Introduction

The term *organic* generally means "something made from the earth" or "not chemically synthesized."

Organic chemistry refers to the **study of** compounds that contain carbon atoms as the principal element.

The simplest organic compounds are *hydrocarbons* made from C and H atoms

Despite the term *organic* generally meaning "natural," organic compounds **can in fact be chemically synthesized** (first synthesized organic compound was **urea** - found in mammal urine)

Carbon has a **bonding capacity of 4** so each C atom must **always make 4 bonds** within a compound

General Nomenclature

Usual fo	ollows order prefix + root + suffix
Prefix	Indicates name/multiplying prefix- es/position of branches
Root	Indicates number of carbons in the parent chain
Suffix	Indicates the parent chain's <i>functional group</i>

${f A}$ Root Name/Branch Prefixes		
Number of C atoms / branches	Root prefix	Multiplying prefix
1	meth-	mono-
2	eth-	di-
3	prop-	tri-
4	but-	tetra-
5	pent-	penta-
6	hex-	hexa-
7	hep-	hepta-
8	oct-	octa-

By NescafeAbusive32 (nescafeabusive32)

A Root Name/Branch Prefixes (cont)

9	non-	nona-
10	dec-	deca-

Special nomenclature prefixes: See Importance of Functional Groups, Haloalkyl/Other Functional Groups, and Special Alkyl Branches

All prefixes are listed in alpha order when writing the name of an organic compound, except for *cyclo*- and *iso*-.

≣ Importance of Functional Groups		
Functional Group	Suffix if Highest Precedence	Prefix if Lower Precedence
RC(=O)OH (carboxylic acid)	-oic acid ²	carboxy-
RC(=O)OR' (ester)	[branch] ¹ - <i>y</i> / [root] ¹ - <i>oate</i>	alkoxycar- bonyl-
RC(=O)ON(- R')R" (amide)	-amide	carbamoyl-
RC≡N (nitrile)	-nitrile	cyano-
RC=O (aldehyde)	- <i>al</i> ³	охо- ³
RC(=O)R' (ketone)	-one	0ХО-
R(OH)R' (alcohol)	-01	hydroxy-
R(N(R')R")- R''' (amine)	-amine	amino-
RC=CR' (alkene)	-ene ⁴	Always used as a suffix
RC≡CR' (alkyne)	-yne ⁴	Always used as a suffix

Published 23rd January, 2018. Last updated 29th December, 2018. Page 1 of 5.

∃ Importance of Functional Groups (cont)		
RCCR'	-ane	Always used as a
(alkane)		suffix
R(X)R'	Always	See Haloalkyl-
	used as a	s/Other Functional
	prefix	Groups

^[1][branch] and [root] refer to the length of the carbon group's prefix (*meth-*, *eth-*, *prop-*, etc.)

^[2]If the carbon in the RCOOH group is not the parent chain, the highest precedence suffix is *-carboxylic acid*

^[3]If the carbon in the RCO group is not the parent chain, the highest precedence suffix is *- carbaldehyde*, and the alternate prefix is *formyl*-

^[4]If a compound is both an alkene and an alkyne, both *-ene* and *-yne* are used

Haloalkyls/Other Functional Groups

Functional Group	Prefix	
R-O-R' (ether) ¹	[branch]-oxy-	
R-C-R (cycloalkyls)	cyclo-	
R-F	fluoro-	
R-Br	bromo-	
R-CI	chloro-	
R-I	iodo-	
R-NO 2	nitro-	
1,2-[branch(es)] ²	ortho-[branch(es)]	
1,3-[branch(es)] ²	meta-[branch(es)]	
1,4-[branch(es)] ²	para-[branch(es)]	
^[1] Ethers take precedence in prefixes over		
all other prefixes, except the branches		
attached to the ether group		

^[2]Applies **only** to benzene ring branches

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/nescafeabusive32/

Gr. 12 Organic Chemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

B Special Alkyl Branches	
Propyl	Butyl
n-propyl (normal)	n-butyl (normal)
isopropyl (y-shape)	isobutyl (y-shape)
	sec-butyl (2 nd C)
	tert-butyl (t-shape)

^ Alkanes	
Contain only	/ single bonds between C atoms
General chemical formula	C_nH_{2n+2} (n = whole number)
Odour	Odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m- elting point	Depends on length of parent C chain (more C = \clubsuit BP, less C = \clubsuit BP)

Contain at le	east one double bond between
C atoms	
General chemical	C_nH_{2n} (n = whole number)
formula	
Odour	Almost odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m-	Depends on length of parent C
elting point	chain (more C = \clubsuit BP, less C = \clubsuit BP)

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Contain at le atoms	east one triple bond between C
General chemical formula	C_nH_{2n-2} (n = whole number)
Odour	Almost odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m- elting point	Depends on length of parent C chain (more C = \clubsuit BP, less C = \clubsuit BP)

Cycloalkyl

Alkane/alkene/alkyne where the C atoms are joined in a ring shape

General	C2H2n (cycloalkane)
chemical	C2H2n-2 (cycloalkene)
formula	C2H2n-4 (cycloalkyne)
	(n = whole number)
Odour	Odourless/almost odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m- elting point	Depends on length of parent C chain (more C = ♠ BP, less C = ♦ BP)

T Alcohols

Any compou OH)-R') grou	und that contains a hydroxyl (R(- up
General chemical formula	CnH2n-1OH (n = whole number)
Odour	Slightly pungent
Polarity	Polar (between O-H bonds); longer C chains decrease in polarity
Solubility in water	Very soluble; longer C chains decrease solubility
Boiling/m- elting point	Depends on length of parent C chain (more C = \clubsuit BP, less C = \clubsuit BP)

ℜ Aldehydes/Ketones

Any compound that contains a carbonyl (R- C(=O)-R') group		
Aldehydes have the carbonyl group at the first and/or last C atom of the molecule		
Ketones have the carbonyl group in the middle C atom(s) of the molecule		
General chemical formula	$C_nH_{2n}O$ (n = whole number)	
Odour	Pungent (aldehyde) Sweet (ketone)	
Polarity	Polar (between C=O bonds); longer C chains decrease polarity	
Solubility in water	Very soluble; longer C chains decrease solubility	

Published 23rd January, 2018. Last updated 29th December, 2018. Page 2 of 5.

Sponsored by Readable.com Measure your website readability! https://readable.com

Gr. 12 Organic Chemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

ℜ Aldehydes/Ketones (cont)		
Boilin-	Very high, increases with length of	
g/m-	parent C chain (more C = 🛧 BP,	
elting	less C = ় BP)	
point		

Carboxylic Acids/Esters

Any compound that contains a **carboxyl (R-**C(=O)-O-R') group

Carboxylic acids have the carboxyl group at the first and/or last C atom of the molecule

Esters have the carboxyl group in the middle C atom(s) of the molecule

CnH2nCOOH (n = whole
number)
Unpleasant (carboxylic acid) Pleasant (ester)
Polar (between C=O bonds); longer C chains decrease polarity
Very soluble; longer C chains decrease solubility
Very high, increases with length of parent C chain (more C = ↑ BP, less C = ↓ BP)

Ethers

Any compound that contains an alkoxy (R-		
O-R') group		
General chemical	CnH2n+2O (n = whole	
formula	number)	
Odour	Slightly pungent	

By NescafeAbusive32 (nescafeabusive32)

Ethers (cont)

Polarity	Polar (between C-O bonds); longer C chains decrease polarity
Solubility in water	Very soluble; longer C chains decrease solubility
Boilin- g/melting point	Depends on length of parent C chain (more C = ♠ BP, less C = ♦ BP)
Y Amines	Amides
,	und that contains a N atom in a carbonyl group
carboxyl or Amines hav	
carboxyl or Amines hav group(s) (R Amides hav	carbonyl group ve N atoms in a carbonyl

General	CnH2n-1NO (n = whole
chemical	number)
formula	
Polarity	Polar (between C=O, C-O and C-N bonds); longer C chains decrease polarity
Solubility in water	Very soluble; longer C chains decrease solubility
State @ SATP	Depends on length of parent C chain (more C = more solid, less C = more gas)

Intermolecular Forces (IMFs)

Forces that occur between molecules		
Influence the physical properties of a substance		
Weaker than <i>intra</i> molecular forces (forces <i>within</i> molecules)		
3 main types	S:	
London Dispersion Forces (LDF)	Very weak forces that exist in all atoms/molecules caused by temporary charges due to e ⁻ shifts; become stronger with more e ⁻	
Dipole- Dipole	Attraction between opposite charges of polar molecules ; main reason for difference in melting/boiling points	
Hydrogen bonding	Strong dipole-dipole forces with H atoms covalently bonded with an N , O or F atom	
Strength of forces: (weakest) LDF → Dipole-dipole → H-bonding (strongest)		
Combust	ion Reactions	
Combustion Reactions All hydrocarbons burn with oxygen gas (alkanes/alkenes/alkynes/alcohols)		
Combustion	of $C_xH_y + O_2 \rightarrow CO_2$	

Combustion of alcohol

hydrocarbon

+ H₂O C_xH_yOH + O₂ \rightarrow

CO2 + H2O

Published 23rd January, 2018. Last updated 29th December, 2018. Page 3 of 5. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/nescafeabusive32/

Gr. 12 Organic Chemistry Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

8 Elimination Reactions

Take away 2 atoms to form double bond or H₂O

Also called condensation/dehydration reactions Elimin- $C_xH_yX_z$ + [strong base] $\rightarrow C$

	1 1 0 1
ation of	xHy−1 + [halogen (X) salt] + H
haloalkyl	20
Elimin-	$C_XH_YOH \rightarrow [conc \ acid] \rightarrow$
ation of	CxHy-1 + H2O
alcohol	

${oldsymbol{\mathcal{C}}}$ Substitution F	Reactions
Replace one ator	m with another
Substitution reaction	$C_XH_Y + X_2 \rightarrow [heat/pre-ssure] \rightarrow C_XH_{Y-1}X + HX$
Benzene rings	
	ot have true double bonds on reactions can be
Benzene substitution	$C6H6 + X2 \rightarrow C6H5X + HX$
Benzene halide substi-	$C6H5X + X_2 \rightarrow C6H4X_2$ $+ HX$

tution

Halogen in benzene halide reactions forms product meta position only (1,3-[X]benzene)

Addition Reactions

Add atoms	across	double/	triple	bond
-----------	--------	---------	--------	------

Alkenes/alkynes are	nucleophiles	(they like
to give up e−)		

Hydrohalogen- ation	$C_XH_Y + HX \rightarrow C_XH_{Y^+}$ 1X
Halogenation	$C_xH_y + X_2 \rightarrow C_xH_yX$ 2
Hydrogenation	$C_{x}H_{y} + H_{2} \rightarrow C_{x}H_{y} +$
Hydration	CxHy + H2O → CxHy+1OH

Markovnikov's Rule: "the rich get richer"

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Addition Reactions (cont)

The H atom of water/hydrogen gas/hydrogen halide will always bond with the C atom that already had more H atoms bonded to it in an addition reaction

Redox Reactions

Oxidation

C atoms will form more bonds to O atoms

Occurs when an organic compound reacts with an oxidizing agent (usually KMnO4/K2Cr2O7)

Oxidation of primary alcohol	$C_XH_YOH \rightarrow [O] \rightarrow C_XH_Y$ -10 (aldehyde)
Oxidation of secondary alcohol	$C_XH_YOH \rightarrow [O] \rightarrow C_XH_Y$ -1O (ketone)
Oxidation of tertiary alcohol	CxHyOH →[O]→ NO RXN
Oxidation of aldehyde	$C_{x}H_{y}O + H_{2}O \rightarrow [O] \rightarrow$ $C_{x}H_{y-1}OH + H_{2}$ (carboxylic acid)

Reduction

C atoms will form fewer bonds to O atoms

Occurs when an organic compound reacts with an reducing agent (usually H2/LiAlH4)

$CxH_{\mathbb{Y}}O+H_{2}\twoheadrightarrow[H]{\rightarrow}C$
xHy+1OH (primary
alcohol)
$CxH_{Y}O+H_{2}\twoheadrightarrow[H]\toC$
xHy+1OH (secondary
alcohol)

Esterification/Hydrolysis of Esters

Esterificatio	n
Condensatio	on reaction (forms H2O)
Catalyzed b	y concentrated H2SO4 and
high heat	
Esterific-	$C_{\mathrm{X}}H_{\mathrm{Y}}COOH + C_{\mathrm{X}}H_{\mathrm{Y}}OH \twoheadrightarrow [H$
ation	2 SO 4]→ C2xH2yCO2 +
	H2O
Hydrolysis o	of Esters
Reverse reaction to esterification	
<i>Hydro</i> = water, <i>lysis</i> = break	
Hydrolysis	C2xH2yCO2 + H2O →
of ester	$[H_2SO_4] \rightarrow C_XH_YCOOH + C$
	хHуOH
Remember:	Ester is a party girl; she drank
some alcoh	ol and did some acid
↔ Synthesi	s/Hydrolysis of Amides
Synthesis o	f Amides
Condensatio	on reaction (forms H2O)
Synthesis	CxHyCOOH (carboxylic acid)
of amide	+ $C_xH_yNH_2$ (amine) $\rightarrow C_xH$
	yONH2 (amide) + H2O

Hydrolysis of Amides

Reverse reaction to synthesis

Hydrolysis	CxHyONH2	(amide)) + H2O

5 5	-	``	,
of amide	→ CxHy	соон	(carboxylic
	acid) + C	(HyNH	2 (amine)

k.	Synthesis of Amines	

Amines can be made from haloalkyls using ammonia as a starting reactant	
Synthesis of primary amines	$C_XH_XX + NH_3 \rightarrow C_XH$ yNH2 + HX
Synthesis of secondary amines	$C_{x}H_{x}X + C_{x}H_{y}NH_{2}$ $\rightarrow C_{2x}H_{2y}NH + HX$
Synthesis of tertiary amines	$C_{X}H_{X}X + C_{2}H_{2}NH$ $\rightarrow C_{3}H_{3}N + HX$

Published 23rd January, 2018. Last updated 29th December, 2018. Page 4 of 5.

Sponsored by Readable.com Measure your website readability! https://readable.com

[∞] Polymers

Large molecules that are composed of many repeated subunits called monomers

Created through polymerization

Examples include **plastics**, **DNA**, and **proteins**

Unique physical properties - checmically unreactive, flexible/mouldable/stretchable

Polymeriz-	$C_XH_Y + C_XH_Y + C_XH_Y + \dots$
ation (addition	→ [CxHy]n
- chain	
reaction of	
alkene)	
Polymeriz-	HOCxHyOH + HOOCCxH
ation (conde-	yCOOH +→ [O2CCxH
nsation with	yO2CxHyO2]n
alcohol -	
polyester)	
Polymeriz-	H2NCxHyNH2 + HOOCC
ation (conde-	xHyCOOH +→ [NOCC
nsation with	xHyO2CxHyON]n
alcohol -	
polyamide)	

Polymerization (condensation) need the reacting functional group(s) to be on both sides of the monomer(s) to be able to complete the chain reaction (-dioic acid, diol, -diamine)

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Published 23rd January, 2018. Last updated 29th December, 2018. Page 5 of 5. Sponsored by **Readable.com** Measure your website readability! https://readable.com