Gr. 12 Organic Chemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

Introduction

The term *organic* generally means "something made from the earth" or "not chemically synthesized."

Organic chemistry refers to the **study of** compounds that contain carbon atoms as the principal element.

The simplest organic compounds are *hydrocarbons* made from C and H atoms

Despite the term *organic* generally meaning "natural," organic compounds **can in fact be chemically synthesized** (first synthesized organic compound was **urea** - found in mammal urine)

Carbon has a **bonding capacity of 4** so each C atom must **always make 4 bonds** within a compound

General Nomenclature

Usual follows order prefix + root + suffix	
Prefix	Indicates name/multiplying prefix- es/position of branches
Root	Indicates number of carbons in the parent chain
Suffix	Indicates the parent chain's <i>functional group</i>

${f A}$ Root Name/Branch Prefixes		
Number of C atoms / branches	Root prefix	Multiplying prefix
1	meth-	mono-
2	eth-	di-
3	prop-	tri-
4	but-	tetra-
5	pent-	penta-
6	hex-	hexa-
7	hep-	hepta-
8	oct-	octa-

By NescafeAbusive32 (nescafeabusive32)

A Root Name/Branch Prefixes (cont)

9	non-	nona-
10	dec-	deca-

Special nomenclature prefixes: See Importance of Functional Groups, Haloalkyl/Other Functional Groups, and Special Alkyl Branches

All prefixes are listed in alpha order when writing the name of an organic compound, except for *cyclo*- and *iso*-.

أ≡ Importance of Functional Groups		
Functional Group	Suffix if Highest Precedence	Prefix if Lower Precedence
RC(=O)OH (carboxylic acid)	-oic acid ²	carboxy-
RC(=O)OR' (ester)	[branch] ¹ - <i>y</i> / [root] ¹ - <i>oate</i>	alkoxycar- bonyl-
RC(=O)ON(- R')R" (amide)	- <i>amide</i>	carbamoyl-
RC≡N (nitrile)	-nitrile	cyano-
RC=O (aldehyde)	- <i>al</i> ³	охо- ³
RC(=O)R' (ketone)	-one	0ХО-
R(OH)R' (alcohol)	-01	hydroxy-
R(N(R')R")- R''' (amine)	- <i>amine</i>	amino-
RC=CR' (alkene)	-ene ⁴	Always used as a suffix
RC=CR' (alkyne)	-yne ⁴	Always used as a suffix

RCCR' -*ane* Always used as a (alkane) suffix

(aikane)		SUTTIX
R(X)R'	Always	See Haloalkyl-
	used as a	s/Other Functional
	prefix	Groups

Importance of Functional Groups (cont)

^[1][branch] and [root] refer to the length of the carbon group's prefix (*meth*-, *eth*-, *prop*-, etc.)

^[2]If the carbon in the RCOOH group is not the parent chain, the highest precedence suffix is *-carboxylic acid*

^[3]If the carbon in the RCO group is not the parent chain, the highest precedence suffix is *- carbaldehyde*, and the alternate prefix is *formyl*-

^[4]If a compound is both an alkene and an alkyne, both *-ene* and *-yne* are used

∃ Haloalkyls/Other Functional Groups

Functional Group	Prefix	
R-O-R' (ether) ¹	[branch]-oxy-	
R-C-R (cycloalkyls)	cyclo-	
R-F	fluoro-	
R-Br	bromo-	
R-CI	chloro-	
R-I	iodo-	
R-NO2	nitro-	
1,2-[branch(es)] ²	ortho-[branch(es)]	
1,3-[branch(es)] ²	meta-[branch(es)]	
1,4-[branch(es)] ²	para-[branch(es)]	
^[1] Ethers take precedence in prefixes over		
all other prefixes, except the branches		

all other prelixes, except the branches attached to the ether group

^[2]Applies **only** to benzene ring branches

Published 23rd January, 2018. Last updated 29th December, 2018. Page 1 of 5. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/nescafeabusive32/

Gr. 12 Organic Chemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

B Special Alkyl Branches		
Propyl	Butyl	
n-propyl (normal)	n-butyl (normal)	
isopropyl (y-shape)	isobutyl (y-shape)	
	sec-butyl (2 nd C)	
	tert-butyl (t-shape)	

 Alkanes 	
Contain only	v single bonds between C atoms
General chemical formula	C_nH_{2n+2} (n = whole number)
Odour	Odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m- elting point	Depends on length of parent C chain (more C = \clubsuit BP, less C = \clubsuit BP)

Contain at le	east one double bond between
C atoms	
General	CnH2n (n = whole number)
chemical	
formula	
Odour	Almost odourless
Polarity	Non-polar (only C-H bonds)
Solubility	Slightly soluble
in water	
Boiling/m-	Depends on length of parent C
elting	chain (more C = 🛧 BP, less C
point	= ↓ BP)

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Contain at le atoms	east one triple bond between C
General chemical formula	CnH2n-2 (n = whole number)
Odour	Almost odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m- elting point	Depends on length of parent C chain (more C = ↑ BP, less C = ↓ BP)

Cycloalkyl

Alkane/alkene/alkyne where the C atoms are joined in a ring shape

General	C2H2n (cycloalkane)
chemical	C2H2n-2 (cycloalkene)
formula	C2H2n-4 (cycloalkyne)
	(n = whole number)
Odour	Odourless/almost odourless
Polarity	Non-polar (only C-H bonds)
Solubility in water	Slightly soluble
Boiling/m- elting point	Depends on length of parent C chain (more C = ♠ BP, less C = ♦ BP)

T Alcohols

Any compou OH)-R') grou	und that contains a hydroxyl (R(- up
General chemical formula	CnH2n-1OH (n = whole number)
Odour	Slightly pungent
Polarity	Polar (between O-H bonds); longer C chains decrease in polarity
Solubility in water	Very soluble; longer C chains decrease solubility
Boiling/m- elting point	Depends on length of parent C chain (more C = \clubsuit BP, less C = \clubsuit BP)

ℜ Aldehydes/Ketones

Any compound that contains a carbonyl (R- C(=O)-R') group		
Aldehydes have the carbonyl group at the first and/or last C atom of the molecule		
Ketones have the carbonyl group in the middle C atom(s) of the molecule		
General chemical formula	$C_nH_{2n}O$ (n = whole number)	
Odour	Pungent (aldehyde) Sweet (ketone)	
Polarity	Polar (between C=O bonds); longer C chains decrease polarity	
Solubility in water	Very soluble; longer C chains decrease solubility	

Published 23rd January, 2018. Last updated 29th December, 2018. Page 2 of 5.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Gr. 12 Organic Chemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

ℜ Aldehydes/Ketones (cont)		
Boilin-	Very high, increases with length of	
g/m-	parent C chain (more C = 🛧 BP,	
elting	less C = ় ┣P)	
point		

Carboxylic Acids/Esters

Any compound that contains a **carboxyl (R-**C(=O)-O-R') group

Carboxylic acids have the carboxyl group at the first and/or last C atom of the molecule

Esters have the carboxyl group in the middle C atom(s) of the molecule

CnH2nCOOH (n = whole
number)
Unpleasant (carboxylic acid) Pleasant (ester)
Polar (between C=O bonds); longer C chains decrease polarity
Very soluble; longer C chains decrease solubility
Very high, increases with length of parent C chain (more C = ↑ BP, less C = ↓ BP)

Ethers

Any compound that contains an alkoxy (R-		
O-R') group		
General chemical	CnH2n+2O (n = whole	
formula	number)	
Odour	Slightly pungent	

By NescafeAbusive32 (nescafeabusive32)

Ethers (cont)

Polarity	Polar (between C-O bonds); longer C chains decrease polarity
Solubility in water	Very soluble; longer C chains decrease solubility
Boilin- g/melting point	Depends on length of parent C chain (more C = \clubsuit BP, less C = \clubsuit BP)
-	
کار Amines	Amides
Any compo	Amides und that contains a N atom in a carbonyl group
Any compo carboxyl or Amines hav	und that contains a N atom in a

General chemical formula	CnH2n-1NO (n = whole number)
Polarity	Polar (between C=O, C-O and C-N bonds); longer C chains decrease polarity
Solubility in water	Very soluble; longer C chains decrease solubility
State @ SATP	Depends on length of parent C chain (more C = more solid, less C = more gas)

Intermolecular Forces (IMFs)

Forces that	Forces that occur between molecules		
Influence th substance	Influence the physical properties of a substance		
	Weaker than <i>intra</i> molecular forces (forces <i>within</i> molecules)		
3 main type	s:		
London Dispersion Forces (LDF)	Very weak forces that exist in all atoms/molecules caused by temporary charges due to e ⁻ shifts; become stronger with more e ⁻		
Dipole- Dipole	Attraction between opposite charges of polar molecules ; main reason for difference in melting/boiling points		
Hydrogen bonding	Strong dipole-dipole forces with H atoms covalently bonded with an N , O or F atom		
0	Strength of forces: (weakest) LDF → Dipole-dipole → H-bonding (strongest)		
Combus	Combustion Reactions		
2	All hydrocarbons burn with oxygen gas (alkanes/alkenes/alkynes/alcohols)		
Combustion hydrocarbo			

Published 23rd January, 2018. Last updated 29th December, 2018. Page 3 of 5. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Combustion of alcohol

 $C_xH_yOH + O_2 \rightarrow$

CO2 + H2O

cheatography.com/nescafeabusive32/

Gr. 12 Organic Chemistry Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14402/

8 Elimination Reactions

Take away 2 atoms to form double bond or H₂O

Also called condensation/dehydration reactions Elimin- $C_XH_YX_Z$ + [strong base] $\rightarrow C$

	OXITYX2 · [Strong base] · O
ation of	xHy-1 + [halogen (X) salt] + H
haloalkyl	2 0
Elimin-	$C_{\mathbb{X}}H_{\mathbb{Y}}OH \twoheadrightarrow [conc \; acid] \twoheadrightarrow$
ation of	CxHy-1 + H2O
alcohol	

${\boldsymbol{\mathcal{C}}}$ Substitution Reactions		
Replace one ator	m with another	
Substitution reaction	$C_XH_Y + X_2 \rightarrow [heat/pre-ssure] \rightarrow C_XH_{Y}-1X + HX$	
Benzene rings		
Benzene does not have true double bonds so only substitution reactions can be performed		
Benzene substitution	$C6H6 + X2 \rightarrow C6H5X + HX$	
Benzene halide substi-	$C6H5X + X_2 \rightarrow C6H4X_2$ + HX	

tution

Halogen in benzene halide reactions forms product meta position only (1,3-[X]benzene)

Addition Reactions

Add	atoms	across	double/	triple	bond
-----	-------	--------	---------	--------	------

Alkenes/alkynes are	nucleophiles	(they like
to give up e−)		

Hydrohalogen- ation	$C_XH_Y + HX \rightarrow C_XH_{Y^+}$ 1X
Halogenation	$C_xH_y + X_2 \rightarrow C_xH_yX$ 2
Hydrogenation	$C_xH_y + H_2 \rightarrow C_xH_{y+}$
Hydration	CxHy + H2O → CxHy+1OH

Markovnikov's Rule: "the rich get richer"

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Addition Reactions (cont)

The H atom of water/hydrogen gas/hydrogen halide will always bond with the C atom that already had more H atoms bonded to it in an addition reaction

Redox Reactions

Oxidation

C atoms will form more bonds to O atoms

Occurs when an organic compound reacts with an oxidizing agent (usually KMnO4/K2Cr2O7)

Oxidation of primary alcohol	$C_XH_YOH \rightarrow [O] \rightarrow C_XH_Y$ -10 (aldehyde)
Oxidation of secondary alcohol	$C_XH_YOH \rightarrow [O] \rightarrow C_XH_Y$ -1O (ketone)
Oxidation of tertiary alcohol	CxHyOH →[O]→ NO RXN
Oxidation of aldehyde	$C_{x}H_{y}O + H_{2}O \rightarrow [O] \rightarrow$ $C_{x}H_{y-1}OH + H_{2}$ (carboxylic acid)

Reduction

C atoms will form fewer bonds to O atoms

Occurs when an organic compound reacts with an reducing agent (usually H2/LiAIH4)

Hydrogenation	$CxH_{\mathbb{Y}}O+H_{2}\twoheadrightarrow[H]{\rightarrow}C$
(reduction of	xHy+1OH (primary
aldehyde)	alcohol)
Hydrogenation	$CxH_{Y}O+H_{2}\twoheadrightarrow[H]{\rightarrow}C$
(reduction of	xHy+1OH (secondary
ketone)	alcohol)

Esterificatio	n	
Condensation reaction (forms H2O)		
•	y concentrated H2SO4 and	
high heat		
Esterific-	$C_XH_YCOOH + C_XH_YOH \rightarrow [H$	
ation	$2SO4] \rightarrow C2xH2yCO2 +$	
	H2O	
Hydrolysis of Esters		
Reverse reaction to esterification		
<i>Hydro</i> = water, <i>lysis</i> = break		
Hydrolysis	C2xH2yCO2 + H2O →	
of ester	[H2SO4]→ CxHyCOOH + C	
	хHуOH	
Remember:	Ester is a party girl; she drank	
some alcoh	ol and did some acid	
↔ Synthesi	is/Hydrolysis of Amides	
Synthesis o	f Amides	
Condensation reaction (forms H2O)		
Condensati	on reaction (forms H2O)	
Synthesis	on reaction (forms H2O) CxHyCOOH (carboxylic acid)	
	. ,	
Synthesis	CxHyCOOH (carboxylic acid)	
Synthesis	CxHyCOOH (carboxylic acid) + CxHyNH2 (amine) \rightarrow CxH yONH2 (amide) + H2O	
Synthesis of amide Hydrolysis o	CxHyCOOH (carboxylic acid) + CxHyNH2 (amine) \rightarrow CxH yONH2 (amide) + H2O	
Synthesis of amide Hydrolysis o Reverse rea	$C_{x}H_{y}COOH$ (carboxylic acid) + $C_{x}H_{y}NH_{2}$ (amine) $\rightarrow C_{x}H_{y}ONH_{2}$ (amide) + H ₂ O of Amides	

acid) + CxHyNH2 (amine)

Synthesis of Amines	

Amines can be made from haloalkyls using		
ammonia as a starting reactant		
Synthesis of	$C_XH_XX + NH_3 \rightarrow C_XH$	
primary amines	yNH2 + HX	
Synthesis of	CxHxX + CxHyNH2	
secondary	\rightarrow C2xH2yNH + HX	
amines		
Synthesis of	CxHxX + C2xH2yNH	
tertiary amines	→ C3xH3yN + HX	

Published 23rd January, 2018. Last updated 29th December, 2018. Page 4 of 5.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

[∞] Polymers

Large molecules that are composed of many repeated subunits called monomers

Created through polymerization

Examples include **plastics**, **DNA**, and **proteins**

Unique physical properties - checmically unreactive, flexible/mouldable/stretchable

Polymeriz-	$C_xH_y + C_xH_y + C_xH_y + \dots$
ation (addition	→ [CxHy]n
- chain	
reaction of	
alkene)	
Polymeriz-	HOCxHyOH + HOOCCxH
ation (conde-	yCOOH +→ [O2CCxH
nsation with	yO2CxHyO2]n
alcohol -	
polyester)	
Polymeriz-	H2NCxHyNH2 + HOOCC
ation (conde-	xHyCOOH +→ [NOCC
nsation with	xHyO2CxHyON]n
alcohol -	
polyamide)	

Polymerization (condensation) need the reacting functional group(s) to be on both sides of the monomer(s) to be able to complete the chain reaction (-dioic acid, diol, -diamine)

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Published 23rd January, 2018. Last updated 29th December, 2018. Page 5 of 5. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com