\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{NescafeAbusive32 (nescafeabusive32)} \pdfinfo{ /Title (gr-12-energy-changes-and-rates-of-reaction.pdf) /Creator (Cheatography) /Author (NescafeAbusive32 (nescafeabusive32)) /Subject (Gr. 12 Energy Changes and Rates of Reaction Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{D40F0F} \definecolor{LightBackground}{HTML}{FCF0F0} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Gr. 12 Energy Changes and Rates of Reaction Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{NescafeAbusive32 (nescafeabusive32)} via \textcolor{DarkBackground}{\uline{cheatography.com/53385/cs/14452/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}NescafeAbusive32 (nescafeabusive32) \\ \uline{cheatography.com/nescafeabusive32} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 24th January, 2018.\\ Updated 24th January, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.23965 cm} x{2.73735 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Introduction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Thermochemistry:}} the study of the {\bf{energy changes}} that accompany physical or chemical changes in matter} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Types of energy:}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \{\{bt\}\}{\bf{E`p}}` (potential energy) & \{\{bt\}\}the energy of an object due to its {\bf{position/composition}} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \{\{bb\}\}{\bf{E`k`}} (kinetic energy) & \{\{bb\}\}the energy of an object due to its {\bf{motion}} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Thermal energy}} (E`th`): the {\bf{total quantity}} of {\bf{E`k` and E`p`}} in a substance; depends on how fast the particles are moving: more energy = more speed = more E`th`} \tn % Row Count 14 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Heat:}} the transfer of E`th` {\bf{from a warm object to a cool object}}} \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Temperature:}} measure of the {\bf{average E`k`}} of the particles in a substance} \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Law of Conservation of Energy:}} energy {\bf{cannot be created or destroyed}}, only converted from one form to another} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{{\emph{Note:}}}} Temperature ≠ E`th`! A cup of water at 90°C has a higher temperature than a bathtub of water at 40°C, but the water has more E`th` since it has more molecules} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{System/Surroundings and Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{System:}} the group of {\bf{reactants and products}} being studied} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bb\}\}{\emph{Surroundings:}} all the matter that is {\bf{not}} a part of the system} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bb\}\}{\bf{Types of systems:}}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} {\bf{Open system}} & both energy and matter are allowed to enter and leave freely \tn % Row Count 8 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{Closed system}} & energy can enter and leave the system, but matter cannot \tn % Row Count 11 (+ 3) % Row 5 \SetRowColor{white} {\bf{Isolated system}} & neither matter are allowed to leave the system (complete isolation is {\bf{impossible}}) \tn % Row Count 15 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Types of reactions:}}} \tn % Row Count 16 (+ 1) % Row 7 \SetRowColor{white} \{\{bt\}\}{\bf{Endothermic}} & \{\{bt\}\}energy from the surroundings is {\bf{absorbed}} by the system \tn % Row Count 19 (+ 3) % Row 8 \SetRowColor{LightBackground} {\bf{Exothermic}} & energy from the system is {\bf{released}} into the surroundings \tn % Row Count 22 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.9908 cm} x{2.9862 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Specific Heat Capacity and Calorimetry}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Specific heat capacity:}} the amount of energy required to {\bf{raise the temperature}} of 1 g of a substance {\bf{by 1°C}} (measured in J/g°C); depends on {\bf{type}} and {\bf{form}} of substance} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Calorimetry:}} the experimental process of measuring the {\bf{ΔE`th`}} in a {\bf{chemical or physical}} change} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bb\}\}{\emph{Calorimeter:}} device used to {\bf{measure ΔE`th`}}} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bb\}\}{\bf{Types of calorimeters:}}} \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{Polystyrene}} (styrofoam) & Reasonably accurate and inexpensive \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} {\bf{Bomb}} & More precise, used for reactions that involve gases \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{Flame}} & Used for combustion reactions \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Calorimetry Calculations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{4 assumptions when performing calorimetry calculations:}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1. Any thermal energy transferred from the calorimeter to the outside environment is negligible & 3. All dilute, aqueous solutions have the same density as water (D = 1.00 g/mL) \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} 2. Any thermal energy absorbed by the calorimeter itself is negligible & 4. All dilute, aqueous solutions have the same specific heat capacity as water (c = 4.18 J/g°C) \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Calorimetry formula:}}} \tn % Row Count 13 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{Q = mcΔT}}} \tn % Row Count 14 (+ 1) % Row 5 \SetRowColor{white} {\bf{m =}} mass of the substance (g) & {\bf{c =}} specific heat capacity of the substance ( J/g°C) \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{ΔT =}} temperature change experienced by the system; ΔT = T`final` - T`initial` (°C) & {\bf{Q =}} total amount of E`th` absorbed/released by a chemical system ( J ) \tn % Row Count 22 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Value of {\bf{Q}} has two parts: \newline The {\bf{number}}: how much energy is involved \newline The {\bf{sign}}: the direction of the energy transfer (important to show, {\bf{even if it is positive!}}) \newline \newline Because of the law of conservation of energy, the total thermal energy of the system and the surroundings remain constant: \newline \newline {\bf{Q`system` + Q`surroundings` = 0}} \newline {\bf{Q`system` = - Q`surroundings`}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Enthalpy Change (ΔH)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Enthalpy}} (H): the total amount of E`th` in a system; {\bf{not directly measurable}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Must measure {\bf{enthalpy change (ΔH)}} by measuring the {\bf{ΔT}} in the {\bf{surroundings}}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Enthalpy change}} (ΔH): the energy {\bf{released to/absorbed from the surroundings}} during a chemical/physical change; can be measured {\bf{using calorimetry data}}} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{As long as pressure is constant, the enthalpy change of a chemical system is equal to the {\bf{flow of thermal energy in or out of the system}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Enthalpy change formula:}}} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{ΔH = |Q`system`|}}} \tn % Row Count 13 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{ΔH = ±|Q`surroundings`|}}} \tn % Row Count 14 (+ 1) % Row 7 \SetRowColor{white} If ΔH \textgreater{} 0, the reaction is {\bf{endothermic}} & If ΔH \textless{} 0, the reaction is {\bf{exothermic}} \tn % Row Count 17 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{If there is {\bf{more than one substance}} making up the surroundings (i.e. {\bf{bomb/flame calorimeters}}), then} \tn % Row Count 20 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{Q`surroundings` = Σ Q`substances`}}} \tn % Row Count 21 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Molar Enthalpy Change (ΔH`x`)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Molar enthalpy change}} (ΔH`x`): the enthalpy change {\bf{associated with}} a physical/chemical change involving {\bf{1 mol of a substance}} (J/mol)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{{\emph{x}} = type of change}} (vaporization, neutralization, combustion, etc.)} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Molar enthalpy change formula:}}} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{ac\}\}{\bf{ΔH = nΔH`x`}}} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Representing Enthalpy Change}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{4 ways to represent ΔH:}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} 1. Thermochemical equations with {\bf{energy terms}} & CH`4` + 2 O`2` \{\{fa-long-arrow-right\}\} CO`2` + 2 H`2`O + {\bf{890.8 kJ}} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} 2. Thermochemical equations with {\bf{ΔH terms}} & CH`4` + 2 O`2` \{\{fa-long-arrow-right\}\} CO`2` + 2 H`2`O {\bf{ΔH = -890.8 kJ}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} 3. Molar enthalpies {\bf{(ΔH`x`)}} & ΔH`comb` = -890.8 kJ/mol \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} 4. Potential energy {\bf{(E`p`)}} diagrams & \{\{popup="http://www.swotrevision.com/pages/alevel/chemistry/images/img\_64.GIF"\}\}See an example here\{\{/popup\}\} \tn % Row Count 17 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Hess' Law}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Enthalpy change (ΔH) is determined by {\bf{initial and final conditions}} of a system; it is {\bf{independent}} of the pathway} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The total ΔH of a multi-step reaction is the {\bf{sum of the ΔH}} of its {\bf{individual steps}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Hess's Law formula:}}} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{ΔH`reaction` = Σ ΔH`steps`}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{This formula can be used in cases where the {\bf{overall reaction is not feasible to be done in a calorimeter}} (i.e. reaction is too slow/too fast/too violent)} \tn % Row Count 11 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Rules:}}} \tn % Row Count 12 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{1. If a reaction is {\bf{flipped}}, flip the ΔH value's sign} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{2. If a reaction is {\bf{multiplied}}, multiply the ΔH value} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Standard Enthalpy of Formation (ΔH°`f`)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The standardized ΔH when {\bf{1 mol}} of a substance is formed ({\bf{synthesized}}) directly from its elements to its {\bf{standard state at SATP}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The elements themselves have a ΔH°`f` of {\bf{0}} (elements {\bf{cannot be synthesized}})} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Bond Energies (D) and Bond Enthalpy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bb\}\}{\bf{Bond Energies}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Stability of a molecule is related to the {\bf{strength of its covalent bonds}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The {\bf{strength}} is determined by the {\bf{energy required to break that bond}}} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Bond Enthalpy:}}} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}ΔH for breaking a particular bond in {\bf{1 mol of a gaseous substance}}} \tn % Row Count 8 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Always positive}} because energy is always required to break bonds} \tn % Row Count 10 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Used for {\bf{predicting reaction types}} before the reaction is performed ({\bf{not entirely accurate}})} \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Formula for predicting reaction type using D and bond H:}}} \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{ΔH = Σ (nD`bonds broken`) - Σ (nD`bonds formed`)}}} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{3.43413 cm} x{1.54287 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Reaction Rates}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The {\bf{speed}} at which a reaction {\bf{occurs}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Can be {\bf{fast}} (10\textasciicircum{}-15\textasciicircum{}s) or {\bf{slow}} (years)} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Measured by the {\bf{change}} in the amount of {\bf{reactants consumed}} or {\bf{products formed}} at a given time interval(s)} \tn % Row Count 5 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Can be measured by {\bf{volume}}, {\bf{mass}}, {\bf{colour}}, {\bf{pH}}, and {\bf{electrical conductivity}}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Often expressed as a {\bf{positive value}} for convenience, regardless of what is being measured} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Average rate of reaction:}} rate of a chemical reaction {\bf{between two points in time}} (one time interval); calculated from the {\bf{slope of the secant}} of the time interval on a {\bf{concentration-time graph}}} \tn % Row Count 14 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Average rate of reaction formulas:}}} \tn % Row Count 15 (+ 1) % Row 7 \SetRowColor{white} How fast a {\bf{reactant disappears}} & \textasciicircum{}- Δ{[}A{]}\textasciicircum{}/`Δt` \tn % Row Count 17 (+ 2) % Row 8 \SetRowColor{LightBackground} How fast a {\bf{product appears}} & \textasciicircum{}Δ{[}B{]}\textasciicircum{}/`Δt` \tn % Row Count 19 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Δ{[}A{]}}}, {\bf{Δ{[}B{]}}}, {\bf{{\emph{Δt}}}} = {\emph{{[}A{]}`2` - {[}A{]}`1`}}, {\bf{{[}B{]}`2` - {[}B{]}`1`}}, {\bf{{\emph{t`2` - t`1`}}}}} \tn % Row Count 21 (+ 2) % Row 10 \SetRowColor{LightBackground} \{\{bt\}\}Units & \{\{bt\}\}mol/L⋅s \tn % Row Count 23 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Instantaneous rate of reaction:}} rate of a chemical reaction at a {\bf{single point int time}}; calculated from the {\bf{slope of the tangent}} of the time position on a {\bf{concentration-time graph}}} \tn % Row Count 28 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Collision Theory}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{States that chemical reactions can only occur if the reactants have the right {\bf{kinetic energy (speed)}} and {\bf{orientation}} to break reactant bonds and form product bonds} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Effective collision:}} a collision that has {\bf{sufficient energy}} and {\bf{correct orientation}} of colliding particles to {\bf{start a reaction}}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Ineffective collision:}} a collision where the particles rebound, {\bf{unchanged in nature}}} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Activation energy}} (E`a`): the {\bf{minimum energy required}} for reactants to have for a collision to be effective} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Activated complex/transition state:}} {\bf{unstable arrangement of atoms}} containing {\bf{partially formed}} and {\bf{partially broken bonds}}; {\bf{maximum E`p` point}} in the reaction} \tn % Row Count 16 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Rate of a reaction depends on the {\bf{frequency of collisions}} and the {\bf{fraction of those collisions}} that are {\bf{effective}}.\{\{bt\}\}} \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\} Rate = {\bf{frequency}} of collisions x {\bf{fraction of collisions}} that are {\bf{effective}}} \tn % Row Count 21 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Increasing Reaction Rates}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5 factors that can increase a reaction rate: {\bf{chemical nature}} of reactants, {\bf{concentration}}, {\bf{surface area}}, {\bf{temperature}}, and {\bf{catalysts}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Chemical nature of reactants}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}For any reactant, the activation energy required depends on the {\bf{bond type}} (single vs double vs triple), the {\bf{bond strength}} ({\emph{D}} value), the {\bf{number of bonds}}, and the {\bf{size and shape}} of the molecule(s)} \tn % Row Count 9 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Concentration of reactants}}} \tn % Row Count 10 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\emph{Concentration}} = amount of substance per unit volume (mol/L); applies only to {\bf{solutions}}} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-long-arrow-up\}\}{[}reactant{]} = \{\{fa-long-arrow-up\}\}collisions = \{\{fa-long-arrow-up\}\}rate} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Rate α {[}reactant{]}}} - as the {\bf{concentration increases}}, the {\bf{rate increases}}, and vice versa} \tn % Row Count 16 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Surface area}}} \tn % Row Count 17 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\emph{Surface area}} = total area of all the surfaces of a {\bf{solid}} figure} \tn % Row Count 19 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-long-arrow-up\}\}SA = \{\{fa-long-arrow-up\}\}collisions = \{\{fa-long-arrow-up\}\}rate} \tn % Row Count 21 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Rate α SA}} - as the {\bf{surface area increases}}, the {\bf{rate increases}}, and vice versa} \tn % Row Count 23 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Temperature of system}}} \tn % Row Count 24 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}\{\{fa-long-arrow-up\}\}T = \{\{fa-long-arrow-up\}\}collisions + \{\{fa-long-arrow-up\}\}fraction of effective collisions = \{\{fa-long-arrow-up\}\}rate} \tn % Row Count 27 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Rate α T}} - as the {\bf{temperature increases}}, the {\bf{rate increases}}, and vice versa} \tn % Row Count 29 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Catalyst}}} \tn % Row Count 30 (+ 1) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Increasing Reaction Rates (cont)}} \tn % Row 15 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\emph{Catalyst}} = substance that {\bf{increases the rate}} of a reaction {\bf{without itself being consumed}} in the reaction; provide an {\bf{alternate pathway}} for the reaction with a {\bf{lower E`a`}}} \tn % Row Count 4 (+ 4) % Row 16 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-long-arrow-down\}\}E`a` = \{\{fa-long-arrow-up\}\}fraction of effective collisions = \{\{fa-long-arrow-up\}\}rate} \tn % Row Count 7 (+ 3) % Row 17 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Rate α \textasciicircum{}`1`\textasciicircum{}/`Ea`}} - as the {\bf{catalyzed activation energy decreases}}, the {\bf{rate increases}}, and vice versa} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.14471 cm} x{3.83229 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Rate Law}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Mathematical relationship}} between the {\bf{reaction rate}} and the {\bf{concentration}} of reactants; needs {\bf{experimental data}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Formula:}} Rate = k{[}A{]}\textasciicircum{}a\textasciicircum{}{[}B{]}\textasciicircum{}b\textasciicircum{}{[}C{]}\textasciicircum{}c\textasciicircum{}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{[}A{]}/{[}B{]}/{[}C{]} = concentration of {\bf{reactants}} (only {\bf{reactants}} are relevant); k = rate constant} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Orders of Reaction}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Order of reaction:}} the exponent used to describe the relationship between the {\bf{{[} i {]} of a reactant}} and the {\bf{rate of reaction}}; tells us {\bf{how quickly the rate will increase}} when {[}conc{]} increases} \tn % Row Count 12 (+ 5) % Row 5 \SetRowColor{white} Zero order & Rate = k{[}A{]}\textasciicircum{}0\textasciicircum{}; slope is {\bf{flat}}; rate is not affected by {[}A{]} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} First order & Rate = k{[}A{]}\textasciicircum{}1\textasciicircum{}; slope is an {\bf{increasing straight}} line; rate α {[}A{]} \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} Second order & Rate = k{[}A{]}\textasciicircum{}2\textasciicircum{}; slope is an {\bf{increasing curve}}; rate α {[}A{]}\textasciicircum{}2\textasciicircum{} \tn % Row Count 21 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Total order of reaction}} = the {\bf{sum}} of the exponents in the rate law equation} \tn % Row Count 23 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The only accurate data for concentration and rate is the {\bf{initial rate}}, because as soon as the reaction starts, products are formed and the {\bf{reverse reaction starts}}, making any rate measured after {\emph{t}} = 0 affected by the products.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Reaction Mechanisms}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Chemical reactions usually occur as a {\bf{sequence}} of {\bf{elementary steps}} that, when added, result in the {\bf{overall reaction}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Mechanism is dependent on the slowest elementary step - the {\bf{rate-determining step}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Elementary step}} = a single molecular event in the reaction mechanism} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{3 criteria for a proposed reaction mechanism:}}} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The elementary steps must {\bf{add up to the overall reaction}}} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The elementary steps must {\bf{be physically reasonable}} - there should not be more than 2 reactants} \tn % Row Count 13 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The rate-determining step must {\bf{be consistent with the rate law equation}}} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}