Gr. 12 Energy Changes and Rates of Reaction Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14452/

Introduction

Thermochemistry: the study of the **energy changes** that accompany physical or chemical changes in matter

Types of energy:

Ep	the energy of an object due to
(potential	its position/composition
energy)	

Ek (kineticthe energy of an object due toenergy)its motion

Thermal energy (Eth): the total quantity of Ek and Ep in a substance; depends on how fast the particles are moving: more energy = more speed = more Eth

Heat: the transfer of Eth from a warm object to a cool object

Temperature: measure of the **average Ek** of the particles in a substance

Law of Conservation of Energy: energy cannot be created or destroyed, only converted from one form to another

Note: Temperature ≠ Eth! A cup of water at 90°C has a higher temperature than a bathtub of water at 40°C, but the water has more Eth since it has more molecules

System/Surroundings and Reactions

System: the group of reactants and products being studied

Surroundings: all the matter that is **not** a part of the system

Types of systems:

System/Surroundings and Reactions (cont)

Open system	both energy and matter are allowed to enter and leave freely
Closed system	energy can enter and leave the system, but matter cannot
Isolated system	neither matter are allowed to leave the system (complete isolation is impossible)
Types of read	tions:
Endoth- ermic	energy from the surroundings is absorbed by the system
Exothermic	energy from the system is released into the surrou- ndings

Specific Heat Capacity and Calorimetry

Specific heat capacity: the amount of energy required to **raise the temperature** of 1 g of a substance **by 1°C** (measured in J/g°C); depends on **type** and **form** of substance

Calorimetry: the experimental process of measuring the $\Delta E th$ in a chemical or physical change

Calorimeter: device used to measure ΔE th

Types of calorimeters:

Polystyrene	Reasonably accurate and
(styrofoam)	inexpensive
Bomb	More precise, used for reactions that involve gases
Flame	Used for combustion reactions

Calorimetry Calculations

4 assumptions when per calculations:	erforming calorimetry
1. Any thermal energy transferred from the calorimeter to the outside environment is negligible	3. All dilute, aqueous solutions have the same density as water (D = 1.00 g/mL)
2. Any thermal energy absorbed by the calorimeter itself is negligible	4. All dilute, aqueous solutions have the same specific heat capacity as water (c = 4.18 J/g°C)
Calorimetry formula:	
Q = m	ιςΔΤ
m = mass of the	c = specific heat

m = mass of the	c = specific heat
substance (g)	capacity of the
	substance (J/g°C)
ΔT = temperature	Q = total amount of
change experienced	Eth absorbed/rel-
by the system; $\Delta T =$	eased by a chemica
Tfinal-Tinitia	system (J)
⊥ (°C)	

Value of **Q** has two parts:

The **number**: how much energy is involved The **sign**: the direction of the energy transfer (important to show, **even if it is positive!**)

Because of the law of conservation of energy, the total thermal energy of the system and the surroundings remain constant:

Qsystem + Qsurrou ndings = 0 Qsystem = - Qsurrou ndings

By NescafeAbusive32

(nescafeabusive32)

cheatography.com/nescafeabusive32/

Published 24th January, 2018. Last updated 24th January, 2018. Page 1 of 4. Sponsored by Readable.com Measure your website readability! https://readable.com

Gr. 12 Energy Changes and Rates of Reaction Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14452/

Enthalpy Change (ΔH)

Enthalpy (H): the total amount of Eth in a system; **not directly measurable**

Must measure **enthalpy change (\DeltaH)** by measuring the Δ T in the **surroundings**

Enthalpy change (ΔH): the energy **released to/absorbed from the surroundings** during a chemical/physical change; can be measured **using calorimetry data**

As long as pressure is constant, the enthalpy change of a chemical system is equal to the **flow of thermal energy in or out of the system**

Enthalpy change formula:

 $\Delta H = |Qsystem|$

$\Delta H = \pm Qsurr$	ou ndings
If $\Delta H > 0$, the	If $\Delta H < 0$, the
reaction is endoth-	reaction is
ermic	exothermic

If there is **more than one substance** making up the surroundings (i.e. **bomb/flame calorimeters**), then

Qsurrou ndings = Σ Qsubstances

Molar Enthalpy Change (ΔHx)

Molar enthalpy change (ΔH_x) : the enthalpy change **associated with** a physical/chemical change involving **1 mol of a substance** (J/mol)

x = type of change (vaporization, neutralization, combustion, etc.)

Molar enthalpy change formula:

 $\Delta H = n\Delta Hx$

Representing Enthalpy Change

4 ways to represent ΔH:

1. Thermochemical equations with **energy** terms

CH4 + 2 O2 → CO2 + 2 H2O + 890.8 kJ

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Representing Enthalpy Change (cont)

2. Thermochemical	CH4 + 2 O2 → CO2
equations with ΔH	+ 2 H2O ΔH = -
terms	890.8 kJ
3. Molar enthalpies	ΔH_{comb} = -890.8
(ΔHx)	kJ/mol
4. Potential energy	See an example
(Ep) diagrams	here

Hess' Law

Enthalpy change (Δ H) is determined by initial and final conditions of a system; it is independent of the pathway

The total ΔH of a multi-step reaction is the sum of the ΔH of its individual steps

Hess's Law formula:

 Δ Hreaction = $\Sigma \Delta$ Hsteps

This formula can be used in cases where the overall reaction is not feasible to be done in a calorimeter (i.e. reaction is too slow/too fast/too violent)

Rules:

1. If a reaction is **flipped**, flip the ΔH value's sign

2. If a reaction is **multiplied**, multiply the ΔH value

Standard Enthalpy of Formation (ΔH°f)

The standardized ΔH when **1 mol** of a substance is formed (**synthesized**) directly from its elements to its **standard state at SATP**

The elements themselves have a $\Delta H^{\circ} \pm$ of 0 (elements cannot be synthesized)

Bond Energies (D) and Bond Enthalpy

Bond Energies

Stability of a molecule is related to the strength of its covalent bonds

The strength is determined by the energy required to break that bond

Bond Enthalpy:

 ΔH for breaking a particular bond in 1 mol of a gaseous substance

Always positive because energy is always required to break bonds

Used for **predicting reaction types** before the reaction is performed (**not entirely accurate**)

Formula for predicting reaction type using D and bond H:

 $\Delta H = \Sigma \text{ (nDbonds broken)} - \Sigma \text{ (nDbonds formed)}$

Reaction Rates

The speed at which a reaction occurs

Can be **fast** $(10^{-15}s)$ or **slow** (years)

Measured by the **change** in the amount of **reactants consumed** or **products formed** at a given time interval(s)

Can be measured by volume, mass, colour, pH, and electrical conductivity

Often expressed as a **positive value** for convenience, regardless of what is being measured

Average rate of reaction: rate of a chemical reaction between two points in time (one time interval); calculated from the slope of the secant of the time interval on a concentration-time graph

Average rate of reaction formulas:

How fast a reactant disappears $-\Delta[A]/\Delta t$

Published 24th January, 2018. Last updated 24th January, 2018. Page 2 of 4. Sponsored by Readable.com Measure your website readability! https://readable.com

Gr. 12 Energy Changes and Rates of Reaction Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14452/

Δ[B] _{/Δt}

 $\Delta[A], \Delta[B], \Delta t = [A]_2 - [A]_1, [B]_2 - [B]_1, t_2 - t_1$

Units	mol/L⋅s
-------	---------

Instantaneous rate of reaction: rate of a chemical reaction at a single point int time; calculated from the slope of the tangent of the time position on a concentration-time graph

Collision Theory

States that chemical reactions can only occur if the reactants have the right **kinetic energy (speed)** and **orientation** to break reactant bonds and form product bonds

Effective collision: a collision that has **sufficient energy** and **correct orientation** of colliding particles to **start a reaction**

Ineffective collision: a collision where the particles rebound, **unchanged in nature**

Activation energy (Ea): the minimum energy required for reactants to have for a collision to be effective

Activated complex/transition state: unstable arrangement of atoms containing partially formed and partially broken bonds; maximum Ep point in the reaction

Rate of a reaction depends on the **frequency** of collisions and the **fraction of those** collisions that are effective.

Rate = frequency of collisions x fraction of collisions that are effective

By NescafeAbusive32 (nescafeabusive32)

Increasing Reaction Rates

5 factors that can increase a reaction rate: chemical nature of reactants, concentration, surface area, temperature, and catalysts

Chemical nature of reactants

For any reactant, the activation energy required depends on the **bond type** (single vs double vs triple), the **bond strength** (*D* value), the **number of bonds**, and the **size and shape** of the molecule(s)

Concentration of reactants

Concentration = amount of substance per unit volume (mol/L); applies only to **solutions**

↑ [reactant] = ↑ collisions = ↑ rate

Rate α [reactant] - as the concentration increases, the rate increases, and vice versa

Surface area

Surface area = total area of all the surfaces of a **solid** figure

↑ SA = ↑ collisions = ↑ rate

Rate α SA - as the surface area increases, the rate increases, and vice versa

Temperature of system

 \uparrow T = \uparrow collisions + \uparrow fraction of effective collisions = \uparrow rate

Rate α T - as the temperature increases, the rate increases, and vice versa

Catalyst

Catalyst = substance that increases the rate of a reaction without itself being consumed in the reaction; provide an alternate pathway for the reaction with a lower Ea

Published 24th January, 2018. Last updated 24th January, 2018. Page 3 of 4.

Increasing Reaction Rates (cont)

↓ Ea = ↑ fraction of effective collisions = ↑ rate

Rate α ¹/Ea - as the catalyzed activation energy decreases, the rate increases, and vice versa

Rate Law

Mathematical relationship between the reaction rate and the concentration of reactants; needs experimental data

Formula: Rate = $k[A]^a[B]^b[C]^c$

[A]/[B]/[C] = concentration of **reactants** (only **reactants** are relevant); k = rate constant

Orders of Reaction

Order of reaction: the exponent used to describe the relationship between the [i] of a reactant and the rate of reaction; tells us how quickly the rate will increase when [conc] increases

Zero	Rate = k[A] ⁰ ; slope is flat ; rate is
order	not affected by [A]
First	Rate = k[A] ¹ ; slope is an
order	increasing straight line; rate α [A]
Second	Rate = $k[A]^2$; slope is an
order	increasing curve; rate $\alpha [A]^2$
T . (. (

Total order of reaction = the **sum** of the exponents in the rate law equation

The only accurate data for concentration and rate is the **initial rate**, because as soon as the reaction starts, products are formed and the **reverse reaction starts**, making any rate measured after t = 0 affected by the products.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/nescafeabusive32/

Reaction Mechanisms

Chemical reactions usually occur as a **sequence** of **elementary steps** that, when added, result in the **overall reaction**

Mechanism is dependent on the slowest elementary step - the rate-determining step

Elementary step = a single molecular event in the reaction mechanism

3 criteria for a proposed reaction mechanism:

The elementary steps must add up to the overall reaction

The elementary steps must **be physically reasonable** - there should not be more than 2 reactants

The rate-determining step must **be** consistent with the rate law equation

cheatography.com/nescafeabusive32/

By NescafeAbusive32 (nescafeabusive32)

Published 24th January, 2018. Last updated 24th January, 2018. Page 4 of 4. Sponsored by Readable.com Measure your website readability! https://readable.com