\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{NescafeAbusive32 (nescafeabusive32)} \pdfinfo{ /Title (gr-12-electrochemistry.pdf) /Creator (Cheatography) /Author (NescafeAbusive32 (nescafeabusive32)) /Subject (Gr. 12 Electrochemistry Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{E06302} \definecolor{LightBackground}{HTML}{FDF5EF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Gr. 12 Electrochemistry Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{NescafeAbusive32 (nescafeabusive32)} via \textcolor{DarkBackground}{\uline{cheatography.com/53385/cs/14465/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}NescafeAbusive32 (nescafeabusive32) \\ \uline{cheatography.com/nescafeabusive32} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th January, 2018.\\ Updated 25th January, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Redox Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Redox}} = "{\bf{reduction}} and {\bf{oxidation}}"} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Oxidation:}} {\bf{lose}} electrons (e¯)\{\{nl\}\}(Classical: any reaction involving {\emph{oxygen gas}} (O`2`) - rusting, combustion, etc.)} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Reduction:}} {\bf{gain}} electrons (e¯)\{\{nl\}\}(Classical: {\emph{reducing}} a metal ore into pure metal)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Both reactions {\bf{always occur together}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\emph{Reducing agent:}} substance that causes {\bf{another substance}} to become {\bf{reduced}}} \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Oxidizing agent:}} substance that causes {\bf{another substance}} to become {\bf{oxidized}}} \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Reducing agents {\bf{NEVER}} reduce themselves; is always {\bf{oxidized}} to promote reduction} \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Oxidizing agents {\bf{NEVER}} oxidize themselves; is always {\bf{reduced}} to promote oxidation} \tn % Row Count 15 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Reducing/oxidizing agents are {\bf{ALWAYS}} reactants} \tn % Row Count 16 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Remember: {\bf{LEO}} the lion says {\bf{GER}} \newline {\bf{L}}ose {\bf{E}}lectrons = {\bf{O}}xidation \newline {\bf{G}}ain {\bf{E}}lectrons = {\bf{R}}eduction \newline \newline {\bf{Not new reactions:}} many synthesis, decomposition, combustion and single displacement reactions are often redox reactions} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Oxidation States/Oxidation Numbers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Net charge that an atom {\bf{{\emph{would}} have}} if the e¯ pairs in covalent bonds belonged {\bf{entirely}} to the {\bf{more electronegative ion}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{All redox reactions require a {\bf{change in O.N.}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \{\{fa-long-arrow-up\}\}{\bf{O.N.}} = oxidation (loss of e¯) & \{\{fa-long-arrow-down\}\}{\bf{O.N.}} = reduction (gain e¯) \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Rules to determine oxidation numbers (O.N.)}}} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \{\{bt\}\}{\bf{Pure elements}} have O.N. = 0 & \{\{bt\}\}C`(s)` = 0, O`2(s)` = 0, P`4(s)` = 0 \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} Monoatomic ions have O.N. = their {\bf{charge}} & Al\textasciicircum{}3+\textasciicircum{} = +3, Cl¯ = -1 \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} Hydrogen {\bf{always}} has O.N. = +1 (except metal hydrides = -1) & HCl (H = +1); H`2`S (H = +1); CaH`2` (H = -1) \tn % Row Count 19 (+ 4) % Row 7 \SetRowColor{white} Oxygen {\bf{always}} has O.N. = -2 (except peroxides = -1) & Li`2`O (O = -2); KNO`3` (O = -2); H`2`O`2` (O = -1) \tn % Row Count 22 (+ 3) % Row 8 \SetRowColor{LightBackground} In a compound, {\bf{groups I}}, {\bf{II}}, and {\bf{IV}} usually have {\bf{O.N. = ionic charge}} & NaCl (Na = +1, Cl = -1); MgO (Mg = +2) \tn % Row Count 27 (+ 5) % Row 9 \SetRowColor{white} In a {\bf{neutral}} compound\textasciicircum{}1\textasciicircum{}, {\bf{ΣO.N. = 0}} & CF`4` (C = +4, F = -1) \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Oxidation States/Oxidation Numbers (cont)}} \tn % Row 10 \SetRowColor{LightBackground} In a polyatomic ion, {\bf{ΣO.N. = ion's charge}} & NO`3`¯ (N = 5, O = -2; Σ O.N. = -1) \tn % Row Count 3 (+ 3) % Row 11 \SetRowColor{white} In molecular compunds with {\bf{no O}} or {\bf{H}}, the {\bf{more electronegative atom}} has O.N. = its usual charge & CS`2` (S = -2), Li`3`N (N = -3)~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \tn % Row Count 19 (+ 16) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Note:}} The atoms {\bf{do not actually have these charges}}! \newline \newline \textasciicircum{}{[}1{]}\textasciicircum{} If a compound contains a polyatomic ion, the {\bf{charge on the other ion}} is the {\bf{opposite}} to the {\bf{polyatomic ion's charge}} (ex. KIO`3` - K = +1 because IO`3` is 1-) \newline \newline {\bf{Format for O.N.:}} "±\#" ({\bf{not}} "\#±" - ionic charges)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Half-Reactions and Disproportionate Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Most often, one atom is reduced and another is oxidized, but sometimes the same atom can be {\bf{oxidized and reduced in the same redox reaction}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}\{\{ac\}\}{\bf{Cu`2`O`(aq)` + H`2`SO`4(aq)` \{\{fa-long-arrow-right\}\} Cu`(s)` + CuSO`4 (aq)` + H`2`O`(l)`}}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Cu \{\{fa-long-arrow-right\}\} +1 to 0 \{\{fa-long-arrow-right\}\} gain 1 e¯ \{\{fa-long-arrow-right\}\} {\bf{reduced}}} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Cu \{\{fa-long-arrow-right\}\} +1 to +2 \{\{fa-long-arrow-right\}\} lose 1 e¯ \{\{fa-long-arrow-right\}\} {\bf{oxidized}}} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\} Since both of these happen in the {\bf{same reaction}}, it is {\bf{disproportionate}}} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Half-reaction:}} reactions made from overall net ionic equations that focus on 1 specific atom} \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{ac\}\}{\bf{Zn`(s)` + CuSO`4(aq)` \{\{fa-long-arrow-right\}\} ZnSO`4(aq)` + Cu`(s)`}}} \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} {\bf{Zn`(s)` \{\{fa-long-arrow-right\}\} ZnSO`4(aq)`}} & {\bf{CuSO`4(aq)` \{\{fa-long-arrow-right\}\} Cu`(s)`}} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Electrochemical Cells}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Two types}} of electrochemical cells:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\emph{Galvanic cells}} & arrangement of 2 connected {\emph{half-cells}} that {\bf{spontaneously}} produce an electric current; e¯ always flow from high potential \{\{fa-long-arrow-right\}\} low potential \tn % Row Count 8 (+ 7) % Row 2 \SetRowColor{LightBackground} {\emph{Electrolytic cells}} & arrangement of 2 connected {\emph{half-cells}} that uses electrical energy to produce a {\bf{non-spontaneous}} electric current; e¯ always flow from low potential \{\{fa-long-arrow-right\}\} high potential \tn % Row Count 16 (+ 8) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Parts of an electrochemical cell}}} \tn % Row Count 17 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Electrolyte:}} solution that contains aqueous ions ({\bf{cations}} (+) and {\bf{anions}} (-))} \tn % Row Count 19 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\emph{Electrode:}} solid metal conductor where redox reactions occur ({\bf{cathode}} (oxidation) and {\bf{anode}} (reduction))} \tn % Row Count 22 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Salt bridge:}} tube that {\bf{contains an electrolyte solution}} and {\bf{connects the 2 half-cells}}; used to {\bf{maintain electrical neutrality}}} \tn % Row Count 25 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{During the lifespan of the cell, the anode {\bf{decreases in mass}}, while the cathode {\bf{increases in mass}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cell Potential}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The measure of the {\bf{electric potential difference}} (voltage) between 2 half-cells} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Standard cell:}} galvanic cell in which all entities are at {\bf{SATP}} and all solution concentrations are {\bf{1.0 mol/L}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Standard cell potential}} (ΔE°): the ability of each half cell to {\bf{gain e¯}} ({\bf{reduction}})} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Cell potential formula:}}} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{ac\}\}{\bf{ΔE°`(cell)` = E°`cathode` - E°`anode`}}} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Batteries}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Cell:}} {\bf{2 connected electrodes}} in contact with an {\bf{electrolyte}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Battery:}} {\bf{2 or more}} cells connected {\bf{in series}}; voltage of battery is the {\bf{sum of the voltage of all the cells}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Different kinds of batteries are made for {\bf{different sized devices}}; the {\bf{bigger}} the battery, the {\bf{more electrolytic solution}}, and the {\bf{longer it lasts}}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\emph{Alkaline battery:}} a battery that uses an {\bf{alkaline}} ({\bf{basic}}) electrode rather than an acid} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\bf{Primary vs secondary cells}}} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\}{\emph{Primary cells:}} {\bf{non-rechargeable}} cells that run until reactants are {\bf{used up}} (galvanic cells)} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\emph{Secondary cells:}} cells that can be {\bf{recharged}} by adding an {\bf{electric current}} (galvanic when being used, electrolytic when being recharged)} \tn % Row Count 18 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.38896 cm} x{2.58804 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Corrosion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bb\}\}The {\bf{breakdown/deterioration of metal}} by a {\bf{redox reaction}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Conditions required for corrosion}} & {\bf{Conditions that accelerate corrosion}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Oxygen (O`2`) & High temperature \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} Water (H`2`O`(l)`) & Salt and/or other electrolytes \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} & Decrease in pH (more acidity) \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Rusting:}} the corrosion of iron (Fe) {\bf{specifically}}} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Corrosion Prevention}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Method 1: Galvanize the metal}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Galvanizing:}} process where a metal (usually steel) is {\bf{coated with a thick layer of zinc (Zn)}} to prevent corrosion} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\bf{Method 2: Cathodic protection}}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\{\{bt\}\}{\emph{Cathodic protection:}} form of corrosion prevention in which {\bf{e¯ are continuously supplied}} to the metal being protected, making it a {\bf{cathode}}} \tn % Row Count 9 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Two forms:}}} \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} {\bf{Sacrificial anode}} ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ & the oxidation of a more active metal attached to the metal being protected prevents the protected metal from corrosion \tn % Row Count 19 (+ 9) % Row 6 \SetRowColor{LightBackground} {\bf{Impressed current}} & e¯ from a direct current (DC) power source are continuously supplied to the protected metal \tn % Row Count 24 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}