Gr. 12 Electrochemistry Cheat Sheet

Cheatography

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14465/

Redox Reactions

Redox = "reduction and oxidation"

Oxidation: **lose** electrons (e⁻) (Classical: any reaction involving *oxygen gas* (O2) - rusting, combustion, etc.)

Reduction: gain electrons (e⁻) (Classical: *reducing* a metal ore into pure metal)

Both reactions always occur together

Reducing agent: substance that causes **another substance** to become **reduced**

Oxidizing agent: substance that causes another substance to become oxidized

Reducing agents **NEVER** reduce themselves; is always **oxidized** to promote reduction

Oxidizing agents **NEVER** oxidize themselves; is always **reduced** to promote oxidation

Reducing/oxidizing agents are **ALWAYS** reactants

Remember: LEO the lion says GER Lose Electrons = Oxidation Gain Electrons = Reduction

Not new reactions: many synthesis, decomposition, combustion and single displacement reactions are often redox reactions

Oxidation States/Oxidation Numbers

Net charge that an atom *would* have if the e⁻ pairs in covalent bonds belonged **entirely** to the **more electronegative ion**

All redox reactions require a change in O.N.

↑ O.N. = oxidation	↓ O.N. = reduction
(loss of e ⁻)	(gain e [_])

Rules to determine oxidation numbers (O.N.)

Pure elements	С
have O.N. = 0	0

C(s) = 0, O2(s) = 0, P4(s) = 0

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Oxidation States/Oxidation Numbers (cont)

Monoatomic ions have	Al ³⁺ = +3, Cl ⁻ = -
O.N. = their charge	1
Hydrogen always has	HCl (H = +1);
O.N. = +1 (except	H2S (H = +1);
metal hydrides = -1)	CaH2 (H = -1)
Oxygen always has	Li2O (O = -2);
O.N. = -2 (except	KNO3 (O = -2); H
peroxides = -1)	2O2 (O = -1)
In a compound, groups I, II, and IV usually have O.N. = ionic charge	NaCl (Na = +1, Cl = -1); MgO (Mg = +2)
In a neutral	CF4 (C = +4, F =
compound ¹ , ΣΟ.Ν. = 0	-1)
In a polyatomic ion,	NO3 ⁻ (N = 5, O =
ΣΟ.Ν. = ion's charge	-2; Σ O.N. = -1)
In molecular compunds with no O or H , the more electronegative atom has O.N. = its usual charge	CS2 (S = -2), Li3N (N = -3)

Note: The atoms do not actually have these charges!

[1] If a compound contains a polyatomic ion,
the charge on the other ion is the opposite
to the polyatomic ion's charge (ex. KIO3 - K
= +1 because IO3 is 1-)

Format for O.N.: "±#" (not "#±" - ionic charges)

Half-Reactions and Disproportionate Reactions

Most often, one atom is reduced and another is oxidized, but sometimes the same atom can be **oxidized and reduced in the same redox reaction**

Cu2O (aq) + H2SO4 (aq)
$$\rightarrow$$
 Cu (s) +
CuSO4 (ag) + H2O (1)

 $Cu \rightarrow +1 \text{ to } 0 \rightarrow \text{gain } 1 \text{ e}^- \rightarrow \text{reduced}$

 $Cu \rightarrow +1 \text{ to } +2 \rightarrow \text{lose } 1 \text{ e}^- \rightarrow \text{oxidized}$

Since both of these happen in the same reaction, it is disproportionate

Half-reaction: reactions made from overall net ionic equations that focus on 1 specific atom

Zn(s) + CuSO4(a	q) \rightarrow ZnSO4 (aq) +
Cu	(s)
Zn (s) → ZnSO4 ($CuSO4(aq) \rightarrow Cu$

(s)

Electrochemical Cells

aq)

Two	types	of	electroc	hemica	l cells:

Galvanic	arrangement of 2 connected
cells	half-cells that spontaneously
	produce an electric current; e
	always flow from high potential
	→ low potential
Electr-	arrangement of 2 connected
olytic	half-cells that uses electrical
cells	energy to produce a non-spont-
	aneous electric current; e
	always flow from low potential
	→ high potential
Dente of our	

Parts of an electrochemical cell

Electrolyte: solution that contains aqueous ions (cations (+) and anions (-))

Published 25th January, 2018. Last updated 25th January, 2018. Page 1 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Gr. 12 Electrochemistry Cheat Sheet

by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14465/

Electrochemical Cells (cont)

Electrode: solid metal conductor where redox reactions occur (**cathode** (oxidation) and **anode** (reduction))

Salt bridge: tube that contains an electrolyte solution and connects the 2 half-cells; used to maintain electrical neutrality

During the lifespan of the cell, the anode decreases in mass, while the cathode increases in mass

Cell Potential

The measure of the **electric potential difference** (voltage) between 2 half-cells

Standard cell: galvanic cell in which all entities are at SATP and all solution concentrations are 1.0 mol/L

Standard cell potential (ΔE°): the ability of each half cell to gain e^- (reduction)

Cell potential formula:

 ΔE° (cell) = E^o cathode - E^o anode

Batteries

Cell: 2 connected electrodes in contact with an electrolyte

Battery: 2 or more cells connected in series; voltage of battery is the sum of the voltage of all the cells

Different kinds of batteries are made for different sized devices; the bigger the battery, the more electrolytic solution, and the longer it lasts

Alkaline battery: a battery that uses an **alkaline** (**basic**) electrode rather than an acid

Primary vs secondary cells

By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

Batteries (cont)

Primary cells: non-rechargeable cells that run until reactants are used up (galvanic cells)

Secondary cells: cells that can be recharged by adding an electric current (galvanic when being used, electrolytic when being recharged)

Corrosion

The breakdown/deterioration of metal by a redox reaction	
Conditions required for corrosion	Conditions that accelerate corrosion
Oxygen (O2)	High temperature
Water (H2O(1))	Salt and/or other electrolytes
	Decrease in pH (more acidity)

Rusting: the corrosion of iron (Fe) **specif**ically

Corrosion Prevention

Method 1: Galvanize the metal

Galvanizing: process where a metal (usually steel) is **coated with a thick layer of zinc (Zn)** to prevent corrosion

Method 2: Cathodic protection

Cathodic protection: form of corrosion prevention in which e^{-} are continuously supplied to the metal being protected, making it a cathode

Two forms:

Published 25th January, 2018. Last updated 25th January, 2018. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Corrosion Prevention (cont)

Sacrificial	the oxidation of a more active
anode	metal attached to the metal
	being protected prevents the
	protected metal from corrosion
Impressed	e ⁻ from a direct current (DC)
current	power source are continuously
	supplied to the protected
	metal