# Cheatography

# Gr. 12 Chemical Systems and Equilibrium Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14454/

## Introduction

Equilibrium = the point in a chemical reaction where the reactants and the products are formed and broken at the same rate

*Dvnamic equilibrium* = a balance between the forward and backward rates that are occurring simultaneously

Equilibrium law = mathematical description of a chemical system at equilibrium

Equilibrium constant (K or Keq) = the numerical value defining the equilibrium law for a system at a given temperature (changes with temperature)

Heterogeneous equilibrium = products and reactants are in at least 2 different states; pure solids/liquids are not included in Keq formula

## Equilibrium Constant (Keq)

Keq formula:

If  $a[A] + b[B] \Rightarrow c[C] + d[D]$ ; then

 $\mathsf{Keq} = ([C]^{c}[D]^{d}) \div ([A]^{a}[B]^{b})$ 

Magnitude of Keq: states whether the equilibrium position favours products/reactants

| lf K = 1                     | [products] = [react-<br>ants] |
|------------------------------|-------------------------------|
| If K » 1                     | [products] » [react-<br>ants] |
| lf K « 1                     | [products] « [react-<br>ants] |
| Kforward VS Kbackward        |                               |
| lf <b>a[A] ⇒ b[B]</b> , then |                               |

| Kforward = ([B] <sup>D</sup> ) | Kbackward = ([A] <sup>a</sup> ) |
|--------------------------------|---------------------------------|
| ÷ ([A] <sup>a</sup> )          | ÷ ([B] <sup>b</sup> )           |
|                                |                                 |

So : Kforward = <sup>1</sup>/Kbackward @ equilibrium

Purpose of Keq: to determine equilibrium concentration of chemical entities given initial conditions (I.C.E. table)



By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

### Reaction Quotient (Q)

Helps to determine the position of the equilibrium of a system using the rate law for the system and comparing it with the  $K \equiver \e$ 

| lf Q < Ke<br>ସ୍            | [products] < [reactants]<br>Reaction has not reached ⇒<br>yet; reaction needs to <b>shift right</b>    |
|----------------------------|--------------------------------------------------------------------------------------------------------|
| <b>lf Q &gt; K</b> e<br>ਕੁ | [products] > [reactants]<br>Reaction has not reached ⇒<br>yet; reaction needs to <b>shift left</b>     |
| <b>If Q = K</b> e<br>ਧ     | [products] = [reactants]<br>Reaction has not reached<br>equilibrium yet; <b>no shift</b> will<br>occur |

## Variables Affecting Chemical Equilibria

Le Châtelier's Principle: When a chemical system at equilibrium is disturbed by a change in property, the system responds in a way that opposes the change

#### Concentration/Temperature

1 [conc]/T = shift to consume

↓ [conc]/T = shift to replace

If you add more reactant/heat to a system, the system will consume it to make more product, and vice versa

If you remove reactant/heat from a system, the system will replace it from the existing product, and vice versa

#### Volume/Pressure (gases only)

 $\uparrow$  V =  $\downarrow$  P = shift toward side with **more** gas entities (i.e. more mol of gas) (more space for particles)

 $\downarrow$  V =  $\uparrow$  P = shift toward side with fewer gas entities (i.e. less mol of gas) (less space for particles)

Catalysts/Inert (noble) gases → No effect

Published 25th January, 2018. Last updated 27th January, 2018. Page 1 of 2.

#### Equilibria of Slightly Soluble Compounds

Molar solubility. The amount of solute (in mol) that can be dissolved in 1 L of solvent at a certain temperature

T  $\alpha$  solubility: as temperature increases, so does molar solubility

All compounds have some solubility, even if they are considered "insoluble" (really very low molar solubility)

Very soluble compounds (high molar solubility) = no ⇒ (complete disassociation into ions)

Slightly soluble compounds (low molar solubility) = has ⇒ (incomplete/partial disassociation into ions)

As a compound is placed in a solvent, some part of it will dissolve, but at the same time, the reverse reaction starts

Eventually the two reactions reach equilibrium, creating a saturated solution (at this point, [conc] of ions remains constant) → solubility equilibrium

#### Equilibrium formula for solubility:

 $|f x[AaBb] (s) \neq a[A^{b^+}] (aq) + b[B^{a^-}] (aq)$ ), then

# $K_{sp} = [A^{b+}]^a [B^{a-}]^b$

Ksp (Solubility product constant): the product of the [conc] of ions in a saturated solution

| lf K | Amount (mol) of aqueous ions «  |
|------|---------------------------------|
| sp   | amount (mol) of solid substance |
| « 1  |                                 |
| -    | amount (mol) of solid substand  |

lf K Amount (mol) of aqueous ions » amount (mol) of solid substance sp » 1

Molar solubility and the Ksp describe the solubility of a substance in different ways, meaning you can use one to solve for the other (using an ICE table)

Using Q and Ksp to predict precipitate formation

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

# Cheatography

# Gr. 12 Chemical Systems and Equilibrium Cheat Sheet by NescafeAbusive32 (nescafeabusive32) via cheatography.com/53385/cs/14454/

| Equilibria of Slightly Soluble Compounds (cont) |                                                                                                                    |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| <b>lf Q &lt; K</b> s<br>p                       | Not enough ions in solution<br>(unsaturated); <b>no precipitate</b> ;<br>reaction will shift to the <b>right</b>   |  |
| lf Q > Ks<br>p                                  | Lots of ions in solution (satur-<br>ated); <b>precipitate can form</b> ;<br>reaction will shift to the <b>left</b> |  |
| lf Q = Ks<br>p                                  | System is at ⇒; <b>no precipitate</b><br>(saturated solution)                                                      |  |

#### pH and pOH

*pH/pOH:* The measure of **acidity/alkalinity** of a solution

*pH:* The measure of **[H<sup>+</sup>]** in a solution

| pH = -log[H <sup>+</sup> ] | [H3O <sup>+</sup> ] = [H <sup>+</sup> ] |
|----------------------------|-----------------------------------------|
| = -log[H3O <sup>+</sup> ]  | = 10 <sup>-pH</sup>                     |
| pOH: The measure           | e of [OH ] in a solution                |
|                            |                                         |

 $pH = -log[OH^-] \qquad [OH^-] = 10^{-pOH}$ 

The pH and pOH values are related to the exponent of  $K_{\mathbb W}$  (14):

pH + pOH = 14

# Acids and Bases

Arrhenius acid/base = solution that ionizes into  $H^+$  (acid)/ $OH^-$  (base) ions

*Bronsted-Lowry acid/base* = solution that donates (acid)/receives (base) H<sup>+</sup> ions

*Strong acid/base:* solution that **completely ionizes** (acid)/**disassociates** (base) into ions

Weak acid/base: solution that partially ionizes (acid)/disassociates (base) into ions *Monoprotic acids:* acids that donate one H<sup>+</sup> ion

Polyprotic acids: acids that donate more than one  $\textbf{H}^+$  ion

 $(diprotic = 2 H^+, triprotic = 3 H^+, etc.)$ 



By NescafeAbusive32 (nescafeabusive32)

cheatography.com/nescafeabusive32/

# Acids and Bases (cont)

| Acids and Ba                                                                                                                               | ses (cont)                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| <i>Amphiprotic substance:</i> substance that can behave like an acid or as a base (i.e. can <b>donate and receive</b> H <sup>+</sup> ions) |                                                               |  |
| Neutralization                                                                                                                             | reactions                                                     |  |
| With <b>strong</b> a                                                                                                                       | cids/bases:                                                   |  |
| acid                                                                                                                                       | + base → salt + water                                         |  |
| *Complete ion<br>analysis*                                                                                                                 | nization, so <b>no equilibrium</b>                            |  |
| With <b>weak</b> ac                                                                                                                        | ids/bases:                                                    |  |
| acid + base                                                                                                                                | ⇒ conjugate base + conjugate<br>acid                          |  |
| *Partial ionizationality analyzed*                                                                                                         | ation, so <b>equilibrium has to be</b>                        |  |
| Acid/Base Co                                                                                                                               | onstants (Ka and Kb)                                          |  |
| Ka/Kb indicat                                                                                                                              | te the <b>strength</b> of an acid/base                        |  |
| lf Ka/Kb »<br>1                                                                                                                            | Strong acid/base (complete ionization/disassociation)         |  |
| lf Ka/Kb «<br>1                                                                                                                            | Weak acid/base ( <b>partial</b> ionization/disassociation)    |  |
| If one K is known, the other can be determined using $K_{\mathbb{W}}$ through the formula:                                                 |                                                               |  |
| Kw = Ka (of                                                                                                                                | acid) • Kb (of conjugate base)                                |  |
| Kw = Kb (of                                                                                                                                | base) • Ka (of conjugate acid)                                |  |
| Autoionizatio<br>(Kw)                                                                                                                      | n of Water and Water Constant                                 |  |
| Water can dis                                                                                                                              | ssociate into ions on its own:                                |  |
| H2O (1                                                                                                                                     | $H^+(aq) + OH^-(aq)$                                          |  |
| But the H <sup>+</sup> ior <b>molecules:</b>                                                                                               | n can also <b>attack other H2O</b>                            |  |
| H2O (1)                                                                                                                                    | + $H^+$ (aq) $\Rightarrow$ H3O <sup>+</sup> (aq) <sup>1</sup> |  |

Adding both reactions together:

 $2 \text{ H}_{2}O(1) \Rightarrow \text{H}_{3}O^{+}(aq) + OH^{-}(aq)$ 

All equilibria have a constant (K) value, therefore:

## Kw = [H3O<sup>+</sup>][OH<sup>-</sup>]

(H2O (1) not included because it is not (a

**q)**)

Since water is **neutral** (pH = 7):

Published 25th January, 2018. Last updated 27th January, 2018. Page 2 of 2. Autoionization of Water and Water Constant (Kw) (cont)

 $[H^{+}] = 1.0 \cdot 10^{-7} \rightarrow [H3O^{+}] = 1.0 \cdot 10^{-7}$   $pH + pOH = 14 \rightarrow pOH = 7 \rightarrow$   $[OH^{-}] = 1.0 \cdot 10^{-7}$ If [H3O^{+}] = 1.0 \cdot 10^{-7}, and [OH^{-}] = 1.0 \cdot 10^{-7},
then:  $K_{W} = (1.0 \cdot 10^{-7})(1.0 \cdot 10^{-7})$   $= 1.0 \cdot 10^{-14}*$ 

<sup>[1]</sup>H3O<sup>+</sup> (aq): Hydronium ion

\* Value of  $K_W$  is **always** 1.0.10<sup>-14</sup>

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com