Introduction

Equilibrium $=$ the point in a chemical reaction where the reactants and the products are formed and broken at the same rate
Dynamic equilibrium = a balance between the forward and backward rates that are occurring simultaneously

Equilibrium law= mathematical description of a chemical system at equilibrium
Equilibrium constant (K or Keq) $=$ the numerical value defining the equilibrium law for a system at a given temperature (changes with temperature)
Heterogeneous equilibrium = products and reactants are in at least 2 different states; pure solids/liquids are not included in Keq formula

Equilibrium Constant (Keq)	
Keq formula:	
If $\mathrm{a}[\mathrm{A}]+\mathrm{b}[\mathrm{B}] \rightleftharpoons \mathrm{c}[\mathrm{C}]+\mathrm{d}[\mathrm{D}]$; then	
Keq $=\left([C]^{\text {c }}[D]^{d}\right) \div\left([A]^{\mathrm{a}}[B]^{\mathrm{b}}\right)$	
Magnitude of Keq: states whether the equilibrium position favours products/reactants	
If $\mathrm{K}=1$	[products] $=$ [react- ants]
If K 》 1	[products] » [reactants]
If $\mathrm{K} \ll 1$	[products] < [reactants]
Kforward vs Kbackward	
If $\mathbf{a}[\mathrm{A}] \rightleftharpoons \mathrm{b}[\mathrm{B}]$, then	
$\begin{aligned} & \text { Kforward }=\left([B]^{b}\right) \\ & \div\left([A]^{a}\right) \end{aligned}$	$\begin{aligned} & \text { Kbackward }=\left([A]^{\mathrm{a}}\right) \\ & \div\left([B]^{\mathrm{b}}\right) \end{aligned}$
So \therefore Kforward $=1 /$ Kbackward @ equilibrium	
Purpose of Keq: to determine equilibrium concentration of chemical entities given initial conditions (I.C.E. table)	

By NescafeAbusive32
(nescafeabusive32)

Reaction Quotient (Q)

Helps to determine the position of the equilibrium of a system using the rate law for the system and comparing it with the Keq

If $Q<K e$	[products] < [reactants]
q	Reaction has not reached \rightleftharpoons yet; reaction needs to shift right
If $Q>K e$	[products] > [reactants]
q	Reaction has not reached \rightleftharpoons yet; reaction needs to shift left
If $Q=K e$	[products] = [reactants]
q	Reaction has not reached equilibrium yet; no shift will occur

Variables Affecting Chemical Equilibria

Le Châtelier's Principle: When a chemical system at equilibrium is disturbed by a change in property, the system responds in a way that opposes the change

Concentration/Temperature

\uparrow [conc]/T = shift to consume
\downarrow [conc]/T = shift to replace
If you add more reactant/heat to a system, the system will consume it to make more product, and vice versa

If you remove reactant/heat from a system, the system will replace it from the existing product, and vice versa
Volume/Pressure (gases only)
$\uparrow V=\downarrow P=$ shift toward side with more gas entities (i.e. more mol of gas) (more space for particles)
$\downarrow V=\uparrow P=$ shift toward side with fewer gas entities (i.e. less mol of gas) (less space for particles)

Catalysts/Inert (noble) gases \rightarrow No effect

Published 25th January, 2018.
Last updated 27th January, 2018.
Page 1 of 2.

Equilibria of Slightly Soluble Compounds
Molar solubility. The amount of solute (in mol) that can be dissolved in 1 L of solvent at a certain temperature
T α solubility: as temperature increases, so does molar solubility

All compounds have some solubility, even if they are considered "insoluble" (really very low molar solubility)
Very soluble compounds (high molar solubility $)=$ no $\rightleftharpoons($ complete disassociation into ions)

Slightly soluble compounds (low molar solubility) $=$ has \rightleftharpoons (incomplete/partial disassociation into ions)

As a compound is placed in a solvent, some part of it will dissolve, but at the same time, the reverse reaction starts

Eventually the two reactions reach equilibrium, creating a saturated solution (at this point, [conc] of ions remains constant) \rightarrow solubility equilibrium

Equilibrium formula for solubility:
If $x[A a B b](s) \rightleftharpoons a\left[A^{b+}\right](a q)+b\left[B^{a}\right]$ (aq), then

$$
\mathrm{Ksp}=\left[\mathrm{A}^{\mathrm{b}+}\right]^{\mathrm{a}}\left[\mathrm{~B}^{\mathrm{a}}\right]^{\mathrm{b}}
$$

Ksp (Solubility product constant): the product of the [conc] of ions in a saturated solution
If \mathbf{K} Amount (mol) of aqueous ions « $\mathrm{sp} \quad$ amount (mol) of solid substance < 1

If K Amount (mol) of aqueous ions 》 $\mathrm{sp} \quad$ amount (mol) of solid substance > 1

Molar solubility and the K_{sp} describe the solubility of a substance in different ways, meaning you can use one to solve for the other (using an ICE table)

Using Q and Ksp to predict precipitate formation

[^0]Equilibria of Slightly Soluble Compounds (cont)
If $Q<K s \quad$ Not enough ions in solution $p \quad$ (unsaturated); no precipitate; reaction will shift to the right

If $Q>K s \quad$ Lots of ions in solution (saturp ated); precipitate can form; reaction will shift to the left
If $Q=K_{s} \quad$ System is at \rightleftharpoons; no precipitate p (saturated solution)

pH and pOH

$\mathrm{pH} / \mathrm{pOH}$: The measure of acidity/alkalinity of a solution
pH : The measure of $\left[\mathrm{H}^{+}\right]$in a solution

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$	$\left[\mathrm{H} 3 \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]$
$=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$=10^{-\mathrm{pH}}$

pOH : The measure of $\left[\mathrm{OH}^{-}\right]$in a solution
$\mathrm{pH}=-\log \left[\mathrm{OH}^{-}\right] \quad\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
The pH and pOH values are related to the exponent of K_{w} (14):

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

Acids and Bases

Arrhenius acid/base $=$ solution that ionizes into H^{+}(acid)/ OH^{-}(base) ions
Bronsted-Lowry acid/base = solution that donates (acid)/receives (base) H^{+}ions
Strong acid/base: solution that completely ionizes (acid)/disassociates (base) into ions Weak acid/base: solution that partially ionizes (acid)/disassociates (base) into ions Monoprotic acids: acids that donate one H^{+} ion
Polyprotic acids: acids that donate more than one H^{+}ion
(diprotic $=2 \mathrm{H}^{+}$, triprotic $=3 \mathrm{H}^{+}$, etc.)

Acids and Bases (cont)

Amphiprotic substance: substance that can behave like an acid or as a base (i.e. can donate and receive H^{+}ions)

Neutralization reactions

With strong acids/bases:

$$
\text { acid + base } \rightarrow \text { salt + water }
$$

Complete ionization, so no equilibrium analysis
With weak acids/bases:

$$
\begin{gathered}
\text { acid }+ \text { base } \rightleftharpoons \text { conjugate base }+ \text { conjugate } \\
\text { acid }
\end{gathered}
$$

Partial ionization, so equilibrium has to be analyzed
Acid/Base Constants (Ka and Kb)
$\mathrm{Ka} / \mathrm{Kb}$ indicate the strength of an acid/base
If $\mathrm{Ka} / \mathrm{Kb}$ » Strong acid/base (complete 1 ionization/disassociation)
If $\mathrm{Ka} / \mathrm{Kb}$ « Weak acid/base (partial 1 ionization/disassociation)
If one K is known, the other can be determined using K_{w} through the formula:
$\mathrm{K}_{\mathrm{w}}=\mathrm{Ka}$ (of acid) $\cdot \mathrm{Kb}$ (of conjugate base)
$\mathrm{Kw}=\mathrm{Kb}$ (of base) $\cdot \mathrm{Ka}($ of conjugate acid)

Autoionization of Water and Water Constant (Kw)

Water can dissociate into ions on its own:

$$
\mathrm{H} 2 \mathrm{O}(1) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

But the H^{+}ion can also attack other H 2 O molecules:

$$
\mathrm{H} 2 \mathrm{O}(\mathrm{l})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})^{1}
$$

Adding both reactions together:

$$
2 \mathrm{H} 2 \mathrm{O}(1) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

All equilibria have a constant (K) value, therefore:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

(H 2 O (1) not included because it is not (a
q))

Since water is neutral ($\mathrm{pH}=7$):

Published 25th January, 2018.
Last updated 27th January, 2018.
Page 2 of 2.

Autoionization of Water and Water Constant (Kw) (cont)

$$
\left[\mathrm{H}^{+}\right]=1.0 \cdot 10^{-7} \rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \cdot 10^{-7}
$$

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}_{=}=14 \rightarrow \mathrm{pOH}=7 \rightarrow \\
{\left[\mathrm{OH}^{-}\right]=1.0 \cdot 10^{-7}}
\end{gathered}
$$

If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \cdot 10^{-7}$, and $\left[\mathrm{OH}^{-}\right]=1.0 \cdot 10^{-7}$, then:

$$
\begin{aligned}
\mathrm{K}_{\mathrm{w}}= & \left(1.0 \cdot 10^{-7}\right)\left(1.0 \cdot 10^{-7}\right) \\
& =1.0 \cdot 10^{-14 *}
\end{aligned}
$$

[^1]Sponsored by Readable.com
Measure your website readability!
https://readable.com

[^0]: Sponsored by Readable.com
 Measure your website readability!
 https://readable.com

[^1]: ${ }^{[1]} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$: Hydronium ion

 * Value of K_{w} is always $1.0 \cdot 10^{-14}$

