\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{nenei} \pdfinfo{ /Title (electrophoresis.pdf) /Creator (Cheatography) /Author (nenei) /Subject (Electrophoresis Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{2E7CF3} \definecolor{LightBackground}{HTML}{F1F6FE} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Electrophoresis Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{nenei} via \textcolor{DarkBackground}{\uline{cheatography.com/162536/cs/44903/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}nenei \\ \uline{cheatography.com/nenei} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 5th November, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Separation technique} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{on the basis of charge} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{incomplete separation} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{"migration of a charged particle under the influence of an electric field"} \tn % Row Count 5 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{separates- amino acids, peptides, proteins, nucleotides, nucleic acids; possess ionizable groups} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.79172 cm} x{3.18528 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Points to remember-}} \tn % Row 0 \SetRowColor{LightBackground} Ion & Migrates towards \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Cation(+) & {\bf{Cathode}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Anion(-) & Anode \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Purpose}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{To determine number , amount, mobility of components in a given sample OR to separate them} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{To obtain information about the electrical double layers surrounding the particles} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Factors affecting electrophoretic mobility-}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Sample} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{(charge to mass ratio)} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 2 (+ 0) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 2 (+ 0) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 2 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 2 (+ 0) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Electric field} \tn % Row Count 3 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 3 (+ 0) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{} \tn % Row Count 3 (+ 0) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Advantage over free electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Microliters of sample are sufficient} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Sample components during their migration split up into as many different zones as it contains differently migrating components. each zone consisting of a single component which can be easily isolated} \tn % Row Count 6 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{stabilizing system does not allow the zones to disperse and spoil the separation} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Many detection schemes are Available And elution helps in further analysis} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Gel electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Separation not only depends on the charge on the molecule but also on its size.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Gels are porous and the size of the pores relative to that of the molecule determines whether the molecule will enter the pore and be retarded or will bypass it.} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Resolution of a sample is sharper and better in a gel than in any other type of medium.} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electrophoretic Mobility in Gels}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Molecular sieving action of the gels and its effect on the mobility of a macromolecule.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The pore size thus the molecular sieving action and therefore the effect on electrophoretic mobility of a molecule are functions of gel concentration} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Kr= C (R + r)} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Kr is the retardation coefficient. C is constant. R is the mean radius of the macromolecule and r is the radius of the gel fibers.} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Solubilizers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{To study subunit composition of oligomeric proteins} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Solubilizers destabilize native structure of proteins by destroying charges that associate subunits together} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Urea - Disrupt hydrogen bonds At high concentration (3-12M). Also, dsDNA can be rendered into ssDNA by use of urea.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{SDS - SDS is an anionic detergent and disrupts macromolecules whose structure has been stabilized by hydrophobic associations. Also imparts a large negative charge to the denatured polypeptides} \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{beta mercaptoethanol - Disrupt Disulphide bridges. Separation of peptides in proteins Linked by disulphide bonds} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of Gel}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Starch Gel, Agarose Gel, Acrylamide Gel and Agarose-Acrylamide Gel} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Starch Gel}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{High porosity starch gels are obtained by using 2\% (w/v) starch and low porosity gels are obtained by adding 10-15\% starch to the buffer.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The pore size in a starch gel cannot be controlled and this is the biggest drawback of these gels.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Difficult to prevent contamination of starch gels by microorganisms.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Another disadvantage of starch gels is that upon staining to detect the separated components, the starch gel turns opaque making direct photoelectric determination impossible.} \tn % Row Count 11 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{the resolving power of starch gels is very high and can be matched only by polyacrylamide gels. One of their important applications is the analysis of isoenzyme patterns (zymograms).} \tn % Row Count 15 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Principle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Any charged ion or molecule migrates when placed in an electric field.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The rate of migration depend upon its net charge, size, shape and the applied electric current.} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formula}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730814686_Screenshot 2024-11-05 191859.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electrophoretic mobility (µ)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Electrophoretic mobility (µ) of an ion is used, which is the ratio of the velocity of the ion to field strength (v/E)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Electrophoretic mobility v is directly proportional to the charge and inversely proportional to the viscosity of the medium, size and shape of the molecule} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formula}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730814843_Screenshot 2024-11-05 192336.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types-}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730816703_Screenshot 2024-11-05 195451.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Free electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{carrier-free electrophoresis} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{matrix-free electrophoretic separation technique} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{used to quantitatively separate samples according to differences in charge or isoelectric point.} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Two Main Techniques- Microelectrophoresis and Moving Boundary Electrophoresis.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Moving boundary electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{allows the charged species to migrate in a free moving solution in the absence of a supporting medium} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Samples are fractioned in a U shaped tube that has been filled with buffer} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An electrical field is applied by means of electrodes at the ends of the U tube and Separation takes place as a result of difference in mobilities} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Method was very popular for quantitative analysis of complex mixtures of macromolecules, especially proteins,e.g., those in blood plasma.} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{fid-3}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730817629_Screenshot 2024-11-05 201002.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{fig-3}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730817662_Screenshot 2024-11-05 201035.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Zone electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{separation technique employing stabilizing media} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{electrophoresis in stabilized media} \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Paper electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Filter paper as a stabilizing medium is very popular for the study of normal and abnormal plasma proteins} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Paper of good quality should contain at least 95\% of cellulose and should have only a very slight adsorption capacity.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Chromatography paper is suitable for electrophoresis and needs no preparation other than to be cut to size.} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Two arrangements of paper in paper electrophoresis are horizontal and vertical} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Process}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Filter paper} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Apparatus - Power pack and Electrophoresis cell} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Sample application} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Electrophoretic run} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{fig}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730818327_Screenshot 2024-11-05 202149.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{fig}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730818454_Screenshot 2024-11-05 202342.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Detection and Quantitative Assay}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Fluorescence} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Ultraviolet absorption} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Staining} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Detection of enzymes in situ} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Applications of paper E-}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Separating amino acids into acidic and basic} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Separation of enzymes in blood} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Protein separation in serum} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Studying SCA in blood} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{History}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Time} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Scientist} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Experiment} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Problems}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Generation of heat (of the electrophoretic medium)}} has following effects-} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{increased rate of diffusion of sample and buffer ions leading to broadening of the separated samples} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{thermal instability of samples that are rather sensitive to heat.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{formation of convection currents, which leads to mixing of separated samples} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{decrease of buffer viscosity, and hence a reduction in the resistance of the medium} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.9954 cm} x{3.9816 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Electroendosmosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{electroosmotic flow} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{Cause-}} & Due to the presence of charged groups on the surface of the support medium. \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{E.g}} & Eg: Carboxyl groups in paper, sulphate impurities in agarose, SiOH groups in capillary electrophoresis \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730815407_Screenshot 2024-11-05 193303.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Points}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{Electroosmotic Flow (EOF)}}: Movement of liquid in response to an electric field, toward the cathode.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{Zeta Potential}}: Surface charges on the gel form an electrical double layer, creating a zeta potential that drives ion flow.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. {\bf{Cation Migration}}: Cations near the capillary wall migrate toward the cathode, dragging the solvent with them.} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4. {\bf{Electric Field Setup}}: An anode (positive) and cathode (negative) are placed to create the electric field across the medium.} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. {\bf{Ion Separation}}: EOF aids in separating analytes; positive ions move quickly to the cathode, while negative ions are slowed.} \tn % Row Count 15 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. {\bf{Applications}}: Used in capillary electrophoresis for separating molecules like DNA and proteins by charge and size.} \tn % Row Count 18 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fig-1}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730816566_Screenshot 2024-11-05 195157.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Microelectrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{method for determination of zeta potentials} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{apparatus-capillary cell, two chambers that include electrodes, and a means of observing the motion of particles.} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{apparatus is filled with very dilute suspension and the chambers are closed.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{direct-current voltage is applied between electrodes in the respective chambers.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{One uses a microscope to determine the velocity of particles.} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Zeta potential values near to zero indicate that the particles in the mixture are likely to stick together when they collide, unless they also are stabilized by non-electrical factors.} \tn % Row Count 14 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Particles having a negative zeta potential are expected to interact strongly with cationic additives} \tn % Row Count 17 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{In modern days this technique is applied only for measuring the zeta potentials of cells such as R.B.Cs, neutrophils, bacteria etc.} \tn % Row Count 20 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{fig-2}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nenei_1730817531_Screenshot 2024-11-05 200815.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cellulose Acetate Electrophoresis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Advantages}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{it is chemically pure} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{cellulose strips are translucent} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{very low content of glucose.} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Cellulose acetate is not very hydrophilic and thus holds very little buffer.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}