
Go Lang Cheat Sheet
by Navron via cheatography.com/185051/cs/38662/

packagespackages

package main

-Every package file has to start with
package.

ImportingImporting

import "fmt" import (

import "math/rand" "fmt"

 "math/rand")

-Both are the same

Control LoopsControl Loops

// Normal For
for i := 0; i < 10; i++ {
sum += i
}
// For loop is Also While Loop
in Go
i := 0
for i < 5 {
 fmt.Println(i)
}
// For with Range
nums := []int{2,4,6,8}
for index,val := range nums {
 fmt.Println(index,
val)
}
//Here range will give the index

of nums to var index

- No paranthesis required around condit‐
ionals and increments
- Variable Initialization and Increment is
optional here

MapsMaps

// Creating Map// Creating Map
with Makewith Make

// creating Map// creating Map

var name =
make([type]type)

var name = map[type]‐
type{val:val, val:val}

var m = make([string], string)

Insert or updateInsert or update
an element in mapan element in map

Retrieve an element:Retrieve an element:

m[key] = elem elem = m[key]

Delete an element:Delete an element:

delete(m, key)

Variable TypesVariable Types

bool string

int int8 int16
int32 int64

uint uint8 uint16 uint32
uint64 uintptr

byte // alias for
uint8

rune // alias for int32

float32 float64 complex64 complex128

Variable ConversionVariable Conversion

x := 8
y := float32(x)

you can replace float32 with different types

ArrayArray

// Array// Array
DeclarationDeclaration
OnlyOnly

// Array Declaration without// Array Declaration without
varvar

var name
[size]type

name := [size]type{val,‐
val,val} //size is optional

var a
[10]string

primes := [6]int{2, 3, 5, 7,
11, 13}

PointersPointers

InitailizeInitailize The & operator generates aThe & operator generates a
pointer to its operandpointer to its operand

var p
*int

p = &i

The * operator denotes the pointer'sThe * operator denotes the pointer's
underlying value.underlying value.

*p = 21

If-else & Switch CaseIf-else & Switch Case

If-ElseIf-Else if-else with Shortif-else with Short
StatementStatement

if conditional {
code }

if short statement; condit‐
ional {code}

else { code } if v := math.Pow(x, n); v <
lim {

 return v

 } else {

 fmt.Printf("%g >= %g\n",
v, lim) }

Switch CaseSwitch Case

switch conditional

case 0:

code

case 1:

code

default:

-Variables declared inside an if short
statement are only in scope until the end of
if-else block
-Go's switch cases need not be constants,
and the values involved need not be
integers

By NavronNavron
cheatography.com/navron/

Not published yet.
Last updated 12th May, 2023.
Page 1 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/navron/
http://www.cheatography.com/navron/cheat-sheets/go-lang
http://www.cheatography.com/navron/
https://apollopad.com

Go Lang Cheat Sheet
by Navron via cheatography.com/185051/cs/38662/

Variables basicVariables basic

// var name type =// var name type =
valuevalue

// Declaration without// Declaration without
typetype

var x int = 5 x := 5

// Constant Declaration with const keyword// Constant Declaration with const keyword

const Phi = 1.618

":=" is called Short Assignment statement
Outside of function ":=" is not allowed

Exported names :- To use any variable
outside of package it must start with Capital
Letter or else it will not run

SlicesSlices

// Slice Declar‐// Slice Declar‐
ationation

// Creating Slice with// Creating Slice with
MakeMake

a[low : high] var := make([]type, size)

a[1:4] a := make([]int, 5) //
len(a)=5

// Appending Item// Appending Item

name = append(name, val)

a = append(a, "Something")

- An array has a fixed size. A slice, on the
other hand, is a dynamically-sized, flexible
view into the elements of an array
- A slice does not store any data, it just
describes a section of an underlying array

FunctionsFunctions

' func function_name(args type)
(output types) {
CODE
}'
func swap(x, y string) (string,
string) {
return y, x
}

- func is used to declaration function
- in case of different input type we have to
specify each one differently
- Output type is must if there is single return
then no need to add paranthesis

StructsStructs

initailizeinitailize Struct fields are accessedStruct fields are accessed
using a dotusing a dot

type Name
struct {

v := Vertex{1, 2}

var type } v.X = 4

type Vertex struct { X int }

v := Vertex{1, 2}

Pointers toPointers to
structsstructs

Struct LiteralsStruct Literals

v :=
Vertex{1, 2}

var (

p := &v v1 = Vertex{1, 2} // has type
Vertex

fmt.Print‐
ln(p.X)

v2 = Vertex{X: 1} // Y:0 is
implicit

 v3 = Vertex{} // X:0 and Y:0

 p = &Vertex{1, 2} // has
type *Vertex)

-A struct is a collection of fields
-A struct literal denotes a newly allocated
struct value by listing the values of its fields

http://www.cheatography.com/
http://www.cheatography.com/navron/
http://www.cheatography.com/navron/cheat-sheets/go-lang

By NavronNavron
cheatography.com/navron/

Not published yet.
Last updated 12th May, 2023.
Page 2 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/navron/
https://apollopad.com

	Go Lang Cheat Sheet - Page 1
	packages
	Maps
	Pointers
	Importing
	If-else & Switch Case
	Control Loops
	Variable Types
	Variable Conversion
	Array

	Go Lang Cheat Sheet - Page 2
	Variables basic
	Structs
	Slices
	Functions

