Cheatography

Chemistry - Acids & Bases Cheat Sheet by nananaoo via cheatography.com/145954/cs/31491/

ACID	
PROTON DONOR	H+
Arrhenius Concept	increases H+ in water (ex. H3O+)
Bronsted-Lowry Concept	can donate a proton (H+)
Lewis Concept	electron pair acceptor (covalent bond created)
strong acids	dissociate fully (100% ionized)
weak acids	dissociate partially (<100% ionized)
	tart/sour taste

ACID/BASE REACTIONS

can be ions or	not limited to (aq) solutions
substances	

some react as acid or base depending on other reactant

salt	ionic compound, product of acid base reaction,
	does NOT contain OH-, not metal oxide

ex. HCl (aq) + KOH (aq) ----> KCl (aq) + H2O

AUTOIONIZATION OF WATER

small % of water undergoes ionization to produce ions

Kw = 1 × 10^-14

ex. H2O (I) + H2O (I) --> H3O+ (aq) + OH- (aq) in pure water.... [H3O+] × [OH-] = 10⁻¹⁴ and [H3O+] = [OH-] = 10₋₇

the product between the molar concentrations of **hydronium ion** and **hydroxide ion** is a constant

pH SCALE

ACID	BASE
рН = -log[H3O+] OR [H3O+] =	pOH = -log[OH-] OR [OH-]
10^-рН	=10^-pH

pH = -log[H+] -pH = log[H3O+] 10 10 [H+] = 10^-pH

С

By nanana00

cheatography.com/nanana00/

Not published yet. Last updated 20th April, 2022. Page 1 of 2.

ACID IONIIZATION CONSTANT, Ka

WEAK ACID IONIZATION	equilibria of weak acid
HA (aq) + H2O≓H3O ⁺ (aq) + A-	Ka = [H+][A-]/[HA]
pKa = -logKa	
pH = -log [H3O+]	[H3O+] = 10 ^{-pH}
pOH = -log[OH-]	[OH-] = 10 ^{-pH}
p = -log	
Degree of lonization, α	neutral molecule splits into charged ions when exposed in a solution
α of weak acid/base in water = fraction of total concentration that has formed ions	ex. HA(aq) + H2O≓H3O ⁺ (aq) + A- (aq)
% ionization (<i>weak acid</i>) =	[A-] eq/[HA] orginally × 100%

the larger the Ka, the stronger the acid

Ka Table

Substance	Formula	Ка
Acetic acid	HCoH2Q2	1.7 × 10 ⁻⁵
Benzoic acid	HC7H5O5	6.3 X 10 ⁻⁵
Boric acid	H ₃ BO ₃	Ka ₁ 5.9 X 10 ⁻¹⁰
Carbonic acid	H ₂ CO ₃	Ka1= 4.3 X 10 ⁻⁷
	HCO3 ⁻	Ka2= 4.8 X 10 ⁻¹¹
Cyanic acid	HOCN	3.5 X 10 ⁻⁴
Formic acid	HCHO ₂	1.7 X 10 ⁻⁴
Hydrocyanic acid	HCN	4.9 X 10 ⁻¹⁰
Hydrofluoric acid	HF	6.8 X 10 ⁻⁴
Hydrogen sulfate ion	HSO4"	1.1 X 10 ⁻²
Hydrogen sulfide	H2S ⇒ HST + HBO+	Ka1= 8.9 X 10*8
	HS" ₹ 52" + H30"	Ka2= 1.2 X 10 ^{-13†}
Hypochlorous acid	HCIO	3.5 X 10 ⁻⁸
Nitrous acid	HNO ₂	4.5 X 10 ⁻⁴
Oxalic acid	H ₂ C ₂ O ₄	Ka1= 5.6 X 10 ⁻²
	HC2O4"	Ka ₂ = 5.1 X 10 ⁺⁵
Phosphoric acid	H3PO4	Ka1= 6.9 X 10*3
	H2PO4"	Ka2= 6.2 X 10 ⁺⁸
	HPO4 ²⁻	Ka ₃ = 4.8 X 10 ⁻¹³
Phosphorous acid	H ₃ PO ₃	Ka1= 1.6 X 10+2
	H ₂ PO ₃ *	Ka2 = 7 X 10 ⁻⁷
Propionoic acid	HC3H5O2	1.3 X 10 ⁻⁵
Pyruvic acid	HC3H3O3	1.4 X 10 ⁻⁴
Sulfurous acid	H ₂ SO ₃	Ka1= 1.3 X 10 ⁻²

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Chemistry - Acids & Bases Cheat Sheet by nananaoo via cheatography.com/145954/cs/31491/

BASE	
PROTON RECEPTOR	OH-
Arrhenius Concept	increase [OH-] in water
Bronsted-Lowry Concept	can accept a proton (H+)
Lewis Concept	electron pair donor (covalent bond created)
strong bases	dissociate fully (100% ionized)
weak bases	dissociate partially (>100%)
hitte	r taste, slipperv feeling

BRONSTED ACID/BASE STRENGHT

acid 1 + base 2 <--> (conjugate) base 1 + (conjugate) acid 2 rxn direction favors weaker acid and base

AUTOIONIZATION OF WATER PROBLEMS

1. hydrogen (hydronium) ion concentra	ation when $[OH-] = 2 \times 10^{-3} M$
	Kw = [H+][OH-] = 1 × 10 ¹⁴
	[H+][2×10 ⁻³] = 1 × 10 ⁻¹⁴
	[H+] = 5.0 × 10 ¹² M
2. hydroxide ion concentration in	n 0.002M HCI solution
	HCl (aq) \rightarrow H+ (aq) + Cl-
	(aq)
<i>HCl is a strong acid, will dissociate 100%</i>	Kw = [H+][OH-] = 1 × 10 ¹⁴
	[0.002M][OH-] = 1 × 10 ⁻¹⁴
	[OH-] = 5.0 × 10 ¹²

CALCULATING pH OF STRONG ACID & BASE

1. pH of 0.10M Ba(OH)2 solution	Ba(OH)2 + H2O> Ba ²⁺ + 2OH-
I	0.10M \\\ 0 0
С	-0.10 \\\ +0.10 +2(0.10)
E	0M \\\ 0.10 0.20
pOH = -log[OH-] = -log[0.20M] = 0.6990	pH = 14.00-0.6990 = 13.30
answer: basic solution	

ACID EQUILLIBRIUM CALCULATIONS (pH from Ka)

calculate pH of 1.0M Acetic acid soln, using approximations. Ka=1.8×10⁻⁵ HC2H3O2 + H2O \rightleftarrows H3O⁺ + C2H3O2⁻

I 1.0 M \\ 0M 0M C -x \\\\ +x +x E 1-x \\\\ x x Ka = [H3O+][C2H3O2-]/[HC2H3O2] Ka = $x^2/1.0 - x = 1.8 \times 10^{-5}$ $\sqrt{x^2} = \sqrt{1.8 \times 10^{-5}}$ x = 4.24 × 10⁻³M %ionization = [H3O+]eq/[HC2H3O2]org × 100% =4.24×10⁻³M/1.0M ×100% = 0.424% <5% can neglect! pH = -log[4.24×10⁻³] =2.30

calculate pH of 1.0×10^{-5} M Acetic acid soln (*diluted concentration*) HC2H3O2 + H2O \rightleftharpoons H3O+ + C2H3O2-I 1.0×10^{-5} M \\\\ 0M 0M

C 1.0×10^{-5} M-x \\\\ +x +x E 1.0×10^{-5} M-x \\\\ x x Ka =x²/ 1.0×10^{-5} M - x= 1.8×10^{-5} M $\sqrt{x^2} = \sqrt{1.8} \times 10^{-10}$ x = 1.34×10^{-5} %ionization = [H3O+]/[HC2H3O2] × 100% =13% > 5% can't neglect! x²/ 1.0×10^{-5} M = 1.8×10^{-5} M x² + 1.8×10^{-5} X - 1.8×10^{-5} M x² + 1.8×10^{-5} X - 1.8×10^{-10} =0 $1.8 \times 10^{-5} \pm \sqrt{(1.8e^{-5})^2} - 4(1)(-1.8 \times 10^{-10})/2(1)$ = 7.15×10^{-6} M = [H3O+] pH = -log[7.15×10^{-6} M]= 5.14

By nanana00

cheatography.com/nanana00/

Not published yet. Last updated 20th April, 2022. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com