\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{nanana00} \pdfinfo{ /Title (biology-unit-4.pdf) /Creator (Cheatography) /Author (nanana00) /Subject (BIOLOGY-{}-UNIT 4 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{68A36E} \definecolor{LightBackground}{HTML}{F5F9F5} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{BIOLOGY-{}-UNIT 4 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{nanana00} via \textcolor{DarkBackground}{\uline{cheatography.com/145954/cs/31507/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}nanana00 \\ \uline{cheatography.com/nanana00} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 19th April, 2022.\\ Updated 20th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{BROAD PATTERNS OF EVOLUTION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Evolution occurs at the population level, evolutionary impact of natural selection is seen in how a population changes over time. }}\{\{ac\}\}} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{THE EVOLUTION OF POPULATIONS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{evolution}} & changes in allele frequency \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{allele frequency}} & (all add up to 1) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{population}} & group individuals of the same species that live in the same area \& interbreed to produce fertile offspring \tn % Row Count 10 (+ 6) % Row 3 \SetRowColor{white} {\bf{genetic variation}} & differences in genen composition \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{sources of genetic variation}} \{\{ar\}\} & {\emph{sexual reproduction}} \tn % Row Count 15 (+ 3) % Row 5 \SetRowColor{white} & {\emph{mutation (change in nucleotide sequence)}} \tn % Row Count 18 (+ 3) % Row 6 \SetRowColor{LightBackground} & {\emph{point mutations}} (single nucleotide change) ex. sickle-cell \tn % Row Count 21 (+ 3) % Row 7 \SetRowColor{white} & {\emph{delete, disrupt, duplicate, rearrange loci}} \tn % Row Count 24 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{genetic variation is required for evolution, but does not guarantee a population will }}\{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.444 cm} x{3.496 cm} x{2.66 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{CHANGE IN ALLELE FREQUENCY}} \tn % Row 0 \SetRowColor{LightBackground} & effect on allele frequency & causes \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \seqsplit{genetic} drift & unpredictable fluctuation of alleles, reduces genetic variation, can limit natural selection & founder effect, pop. bottleneck \tn % Row Count 8 (+ 6) % Row 2 \SetRowColor{LightBackground} \seqsplit{founder} effect & few individuals isolated, diff. allele frequencies in small founder pop. & chance \tn % Row Count 12 (+ 4) % Row 3 \SetRowColor{white} \seqsplit{bottleneck} effect & reduced genetic variation and increased frequency of harmful alleles & sudden environmental change \tn % Row Count 16 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{3 mechanisms change allele frequency = genetic drift, gene flow, natural selection (consistent adaptive evolution) \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{SEXUAL SELECTION}} \tn % Row 0 \SetRowColor{LightBackground} what is it? & individuals w certain characteristics are more likely to find mates \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} sexual dimorphism & marked differences between sexes (ex. pavo real) \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} intrasexual selection & selection within same sex for mates \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} intersexual selection & one sex is choosy with mates \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{sexual selection is natural selection for mating success}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.16 cm} x{5.84 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{NATURAL SELECTION MODES}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{directional}} & conditions favor individuals at one end of the phenotypic range \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{disruptive}} & conditions favor individuals at both extremes of phenotypic range \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{stabilizing}} & conditions favor intermediate variants \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{natural selection {\bf{consistently}} causes adaptive evolution by acting on phenotypes}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Hardy-Weinberg Principle: Equilibrium Population}} \tn % Row 0 \SetRowColor{LightBackground} condition & consequence if condition is not kept \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1. {\bf{no mutations}} & gene pool is modified \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 2. **random mating & inbreeding = no random mixing of gametes, genotype frequencies change \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} 3. {\bf{no natural selection}} & allele frequencies change \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} 4. {\bf{very large pop. size}} & in small pop. allele frequencies change by chance ({\emph{genetic drift}}) \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} 5. {\bf{no gene flow}} & gene flow can alter allele frequencies \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{CAUSES OF EVOLUTION}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649091208_causes of evolution.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{DEFINITION OF SPECIES}} \tn % Row 0 \SetRowColor{LightBackground} concept & defines species by \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{biological}} & reproductive compatability \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} reproductive isolation → new species \{\{ar\}\} & gene flow between populations holds gene pool together, species pop. resemble each other \tn % Row Count 8 (+ 5) % Row 3 \SetRowColor{white} {\emph{limitations}} \{\{ar\}\} & {\emph{gene flow between morphologically \& ecologically distinct species (ex. grolar bear)}} \tn % Row Count 13 (+ 5) % Row 4 \SetRowColor{LightBackground} {\bf{morphological}} & structural features \tn % Row Count 14 (+ 1) % Row 5 \SetRowColor{white} {\bf{ecological}} & ecological niche, interactions w nonliving and living environment \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{based on potential to interbreed, not physical similarity}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{THE ORIGIN OF SPECIES}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{speciation}} \{\{bb\}\} & one species splits into two or more species \{\{bb\}\} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} speciation rates \{\{ar\}\} \{\{bb\}\} & range from 4,000 y to 40 million y (avg. 6.5 my)\{\{bb\}\} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\emph{allopatric}} \{\{ar\}\} & geographically isolated populations \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} & population -gene flow interrupted→ subpopulation \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} & mutation, genetic drift, natural selection, reproductive isolation \tn % Row Count 15 (+ 4) % Row 5 \SetRowColor{white} \textasciicircum{}reproductive isolation\textasciicircum{} & \textasciicircum{}can't breed bc of differences\textasciicircum{} \tn % Row Count 17 (+ 2) % Row 6 \SetRowColor{LightBackground} \textasciicircum{}behavioral isolation\textasciicircum{} & \textasciicircum{}prezygotic barrier, specific mates\textasciicircum{} \tn % Row Count 19 (+ 2) % Row 7 \SetRowColor{white} {\emph{sympatric}} \{\{ar\}\} \{\{bt\}\} & population (no geographic barrier)→ new species \{\{bt\}\} \tn % Row Count 22 (+ 3) % Row 8 \SetRowColor{LightBackground} & reproductive barrier, reduced gene flow \tn % Row Count 24 (+ 2) % Row 9 \SetRowColor{white} & polyploidy, habitat differentiation, sexual selection \tn % Row Count 27 (+ 3) % Row 10 \SetRowColor{LightBackground} \textasciicircum{}polyploidy\textasciicircum{} & \textasciicircum{}extra chromosomes\textasciicircum{} \tn % Row Count 28 (+ 1) % Row 11 \SetRowColor{white} & \textasciicircum{}{\emph{auto}}: same species {\emph{allo}}: diff species\textasciicircum{} \tn % Row Count 31 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{THE ORIGIN OF SPECIES (cont)}} \tn % Row 12 \SetRowColor{LightBackground} \textasciicircum{}habitat differentiation\textasciicircum{} & \textasciicircum{}new ecological niches\textasciicircum{} \tn % Row Count 2 (+ 2) % Row 13 \SetRowColor{white} \textasciicircum{}sexual selection\textasciicircum{} & \textasciicircum{}female selecting mates\textasciicircum{} \tn % Row Count 4 (+ 2) % Row 14 \SetRowColor{LightBackground} microevolution (speciation) \{\{bt\}\} & many speciations, extinctions → macroevolution \{\{bt\}\} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{SPECIATION MODELS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649616492_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{punctuated = rapid speciation gradual = slow speciation}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.508 cm} x{2.66 cm} x{2.432 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{REPRODUCTIVE ISOLATION}} \tn % Row 0 \SetRowColor{LightBackground} {\emph{reproductive barriers}} \{\{ar\}\} \{\{bb\}\} & depend on environmental \& genetic factors \{\{bb\}\} & \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Prezygotic Barriers}} & {\emph{prevent mating between species}} & \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} & geographical & physical barrier (rivers, mountains) \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} & \seqsplit{habitat/ecological} & same area, diff habitats \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} & temporal & diff breeding times \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} & behavioral & unique courtship rituals \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} & mechanical & \seqsplit{morphological} diff \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} & gametic & cannot fertilize \tn % Row Count 20 (+ 2) % Row 8 \SetRowColor{LightBackground} {\bf{Postzygotic Barriers}} & {\emph{prevent a viable, fertile hybrid}} & \tn % Row Count 23 (+ 3) % Row 9 \SetRowColor{white} & reduced hybrid viability & poor \seqsplit{development/survival} \tn % Row Count 26 (+ 3) % Row 10 \SetRowColor{LightBackground} & reduced hybrid fertility & fertile hybrid \tn % Row Count 28 (+ 2) % Row 11 \SetRowColor{white} & hybrid breakdown & infertile 2nd gen \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{2.508 cm} x{2.66 cm} x{2.432 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{REPRODUCTIVE ISOLATION (cont)}} \tn % Row 12 \SetRowColor{LightBackground} {\bf{Hybrid Zones}} \{\{bt\}\} & diff species mate, incomplete reproductive barriers \{\{bt\}\} & \tn % Row Count 5 (+ 5) % Row 13 \SetRowColor{white} \mymulticolumn{3}{x{8.4cm}}{{\emph{novel genetic variation outcomes = }} \{\{ac\}\} *} \tn % Row Count 6 (+ 1) % Row 14 \SetRowColor{LightBackground} \textasciicircum{}reinforcement\textasciicircum{} \{\{ar\}\} & \textasciicircum{}hybrids cease\textasciicircum{} & ← hybrids less fit \tn % Row Count 8 (+ 2) % Row 15 \SetRowColor{white} \textasciicircum{}fusion\textasciicircum{} \{\{ar\}\} & \textasciicircum{}two species fuse\textasciicircum{} & ← weakened rep. barriers \tn % Row Count 11 (+ 3) % Row 16 \SetRowColor{LightBackground} \textasciicircum{}stability\textasciicircum{} \{\{ar\}\} & \textasciicircum{}continued hybrids\textasciicircum{} & ← hybrids equally fit \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{{\emph{biological barriers that impede fertile offspring}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{THE GEOLOGIC RECORD}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649619688_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{TECTONIC PLATES THEORY}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649621421_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{continents are part of plates of Earth's crust, floating on hot mantle \{\{ac\}\} \{\{nl\}\} \newline 3 occasions (1 billion, 600 million, and 250 million years ago) when most of the landmasses of earth came together to form a supercontinent \{\{ac\}\} \{\{nl\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{HISTORY OF EARTH}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649619815_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.48 cm} x{5.52 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{FOSSILS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{fossils are the traces of ancient life, naturally preserved, but an incomplete chronicle of evolution}} \{\{ac\}\}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{macroevolution}} & evolution above the species level, {\emph{interspecific variation}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{microevolution}} & evolutionary change in allele frequencies in a population over generations, {\emph{intraspecific variation}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{favor species that existed for a long time, were abundant/widespread, had hard shells, skeletons \{\{ac\}\}} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{FOSSIL FORMATION}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649617487_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{FOSSIL DATING}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{relative age}} determined by rock strata sequence \{\{ac\}\}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} younger stratum has more recent fossils & older stratum has older fossils \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{absolute age}} determine through radiometric dating \{\{ac\}\}} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{radioactive "parent" isotope decays to "daughter" isotope at a constant rate \{\{ac\}\}} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} {\emph{half-life }}\{\{ac\}\} & known time required for half parent isotope to decay \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{RADIOMETRIC DATING}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649619475_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{If the half-life of carbon-14 is about 5,730 years, then a fossil that has 1/8th the normal proportion of carbon-14 to carbon-12 should be about how many years old?}} {\bf{5730 Years X 3= 17190 years}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{CREATIONS ACCORDING TO FOSSILS}} \tn % Row 0 \SetRowColor{LightBackground} earliest {\bf{prokaryote}} fossils \{\{nl\}\} (ARCHAEAN EON) & form {\emph{stromatolites}} dating back 3.5 BYA,\{\{nl\}\} sole inhabitants for 1.5 BY \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} increase in {\bf{atmospheric oxygen}} & 2.7 BYA \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} cyanobacteria, other photosynthesizers \{\{ar\}\} & led to extinction of many \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} earliest {\bf{eukaryote}} fossils\{\{nl\}\} (PROTEROZOIC EON) & 1.8 BYA, gave rise to multicellular organisms \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{jawed vertebrates}} \{\{nl\}\} (PHANEROZOIC EON) & 440 MYA \tn % Row Count 15 (+ 3) % Row 5 \SetRowColor{white} Cambrain explosion (535-525 mya) \{\{ar\}\} & +diversity, unique mammalian features \tn % Row Count 17 (+ 2) % Row 6 \SetRowColor{LightBackground} {\bf{tetrapods}} \{\{nl\}\}(PALOZOIC ERA) & 375 MYA colonized land \tn % Row Count 19 (+ 2) % Row 7 \SetRowColor{white} {\bf{mammals}} & 120 MYA, from synapsids \tn % Row Count 21 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{MASS EXTINCTIONS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{can be caused by: \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Habitat destruction and/or unfavorable environmental change \{\{ac\}\}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Biological causes (factors)-Origin of one new species can spell doom for another \{\{ac\}\}} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} {\bf{ Permian Mass Extinction (252mya) }} & 96\% marine life when extinct due to intense volcanisms \{\{nl\}\}{\emph{Paleozoic to Mesozoic era}} \tn % Row Count 10 (+ 5) % Row 4 \SetRowColor{LightBackground} {\bf{Cretaceous Mass Extinction (66mya)}} & +50\% of all marine animals, many terrestrial plants and animals, dinosaurs (except birds) due to meteorite \{\{nl\}\}{\emph{Mesozoic to Cenozoic era}} \tn % Row Count 17 (+ 7) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{5–10 million years for diversity to recover \{\{ac\}\}} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{mass extinctions alter ecological communities and remove lineages, forever change the course of evolution and can also pave the way for {\emph{adaptive radiations}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{0.988 cm} x{3.04 cm} x{3.572 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{ADAPTIVE RADIATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{3}{x{8.4cm}}{the evolution of many diversely adapted species from a common ancestor that allows new species to occupy different habitats\{\{ac\}\}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} may \seqsplit{follow:} & mass extinctions & ex. mammals after extinction of dinosaurs \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} & evolution of novel characteristics & ex. rise of photosynthetic organisms \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} & colonization of new regions & organisms colonize new environments with little competition \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{CONTINENTAL DRIFT DURING PHANEROZOIC EON}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649621719_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{Pangea}} (250 mya), organisms adapt (speciation) or go extinct \{\{ac\}\} \{\{nl\}\} \newline when continents drift can result in {\emph{allopatric speciation}} \{\{ac\}\} \{\{nl\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.9 cm} x{3.42 cm} x{2.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{GENETIC MECHANISMS}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{developmental} genes & program development, influence rate, timing, spatial patterns & \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{heterochrony} & evolutionary change in the rate or timing of developmental events & ex. human vs chimpanzee jaw \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} homeotic genes & determine the organization of basic features & \tn % Row Count 11 (+ 3) % Row 3 \SetRowColor{white} hox genes \{\{ar\}\} & a class of homeotic genes, provide positional information during animal development & \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} \seqsplit{evolutionary} novelties & changes at the genetic level lead to developmental changes at the phenotypic level & \tn % Row Count 21 (+ 5) % Row 5 \SetRowColor{white} \seqsplit{exaptations} & structures that originally played one role but gradually acquired a different role & ex. bird feathers \tn % Row Count 26 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EUKARYOTES ARE "COMBINATION" ORGANISMS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649706908_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{consequence of endosymbiosis}} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.6 cm} x{4.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PROTIST}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{is any eukaryotic organism that is not an animal, plant, or fungus}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{first eukaryote was a unicellular protist and most eukaryotes are protists} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{structural and functional diversity, most are aquatic, most are unicellular} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{complex at the cellular level, though simple when compared to eukaryotes} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{nutritional diversity: }}\{\{ar\}\} & {\emph{photoautotroph}} = producers (photosynthetic) \{\{nl\}\}use energy from light (or inorganic chemicals) to convert CO2 to organic compounds \tn % Row Count 15 (+ 7) % Row 5 \SetRowColor{white} & {\emph{heterotroph}} = consumers \tn % Row Count 17 (+ 2) % Row 6 \SetRowColor{LightBackground} & {\emph{parasites}} = \tn % Row Count 18 (+ 1) % Row 7 \SetRowColor{white} & {\emph{mixotroph}} = \tn % Row Count 19 (+ 1) % Row 8 \SetRowColor{LightBackground} {\bf{photosynthetic protists}} & {\emph{main producers in aquatic community}} \{\{nl\}\}biomass of photosynthetic protists is limited by the availability of nitrogen, phosphorus, or iron \{\{nl\}\} diatoms, dinoflagelletes, multicellular algae, others \{\{nl\}\} {\emph{blooms}} dramatic increase in abundance \tn % Row Count 31 (+ 12) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.6 cm} x{4.4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PROTIST (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{symbiotic protists}} & some are parasites that harm their hosts \{\{nl\}\}ex. photosynthetic dinoflagellets provide food for coral reefs \{\{nl\}\}ex. wood-digesting protists break down cellulose in the guts of termites \tn % Row Count 9 (+ 9) % Row 10 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\emph{effect on human health}}} \tn % Row Count 10 (+ 1) % Row 11 \SetRowColor{LightBackground} & {\bf{trypanosoma}} = excavate that causes sleeping sickness\{\{nl\}\}{\bf{apicomplexans}} = alveolate parasites \{\{nl\}\}ex. plasmodium - causes malaria \tn % Row Count 17 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ORIGINS OF COMPLEX MULTICELLULARITY}} \tn % Row 0 \SetRowColor{LightBackground} {\emph{multicellular colonies}} & collections of connected cells, little to no differentiation, can be simple or complex \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Multicellular organisms with differentiated cells likely originated from multiple different ancestors \{\{ac\}\}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{1.}} origin of cyanobacteria\{\{nl\}\}{\bf{2.}} origin of mitochondria\{\{nl\}\}{\bf{3.}} origin of plastid (chloroplast)\{\{nl\}\}{\bf{4.}} origin of multicellular eukaryotes\{\{nl\}\}{\bf{5.}} origin of fungal-plant symbioses} \tn % Row Count 12 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EUKARYOTE SUPERGROUPS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Excavata}} (unicellular protists)} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}‣{\bf{diplomonads}};{\bf{parabasalids}} —\{\{nl\}\} lack plastids, cannot do photosynthesis, reduced mitochondria, mostly anaerobic \{\{nl\}\}‣{\bf{euglenozoans}}— \{\{nl\}\}most have 2 flagella, diverse, inclue predatory heterotrphs, photoautotrophs, parasites \{\{nl\}\}{\emph{ex. trypanosoma - parasitic infection that causes sleeping sickness}}} \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{SAR}} ({\bf{S}}tramenopiles, {\bf{A}}lveolates, {\bf{R}}hizarians) \{\{nl\}\} includes most important photosynthetic organisms)} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}‣{\bf{diatoms}} — diverse photosynthetic unicellular algae\{\{nl\}\}can affect \{\{nl\}\}‣{\bf{brown algae (seaweed)}} — largest \& most complex, multicellular, mostly marine \{\{nl\}\}{\emph{brown due to carotenoids in plastid}} \{\{nl\}\}anchored by {\emph{holdfast}}, stem-like {\emph{stipe}} supporting leaflike {\emph{blades}}} \tn % Row Count 18 (+ 10) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Archaeplastids}}} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}‣{\bf{red algae}} — 2nd largest, mostly multicellular, can absorb green \& blue light \{\{nl\}\}{\emph{red due to phycoerythrin pigment}} \{\{nl\}\}‣{\bf{green algae}}— very similar to land plants, some are unicellular \{\{nl\}\}➥{\bf{chlorophytes}} — marine, terrestrial, mostly freshwater, multicellular, unicellular (free or symbiotic) \{\{nl\}\}➥{\bf{charophytes}} — most closely related to land plants \{\{nl\}\}‣ {\bf{plants}} \{\{nl\}\} chloroplasts of land plants {\emph{cyanobacteria}} ➟ {\emph{green algae}} ➟ {\emph{land plants}}} \tn % Row Count 30 (+ 12) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EUKARYOTE SUPERGROUPS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649983183_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.48 cm} x{5.52 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{DIVERSITIFICATION OF EUKARYOTES}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{eukaryotes}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} & a) plants \{\{nl\}\} b) animals \{\{nl\}\} c) fungi, molds, mushrooms, yeast \{\{nl\}\} d) protists \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} early eukaryotes & date back {\emph{2.7 billion years ago}} \{\{nl\}\} unicellular, with nucleus, membrane, cytoskeleton, varied size \& shape \tn % Row Count 10 (+ 5) % Row 3 \SetRowColor{white} diverse eukaryotes & 1.8 billion years ago\{\{nl\}\} novel biological features evolved: multicellularity, sexual life cycles, eukaryotic photosynthesis \tn % Row Count 15 (+ 5) % Row 4 \SetRowColor{LightBackground} large eukaryotes & 635-541 million years ago (Ediacaran period) {\emph{soft-bodied}} organisms\{\{nl\}\} {\emph{hard-bodied}} organisms 535-525 mya (Cambrian explosion) \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ORIGIN OF MITOCHONDRIA \& PLASTIDS}} \tn % Row 0 \SetRowColor{LightBackground} plastid & membrane-bound organelle (plants, algae, others) \{\{nl\}\} ex. chloroplast \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{endosymbiont theory}} & mitochondria and plastids were formerly small bacteria that began living within larger cells \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} {\emph{key evidence}} \{\{ar\}\} & •inner membranes are similar (transport proteins) to bacteria plasma membrane\{\{nl\}\}•replication is similar to bacteria cell division\{\{nl\}\}•have circular DNA like bacteria\{\{nl\}\}•transcribe/translate own DNA into proteins\{\{nl\}\}•ribosomes more similar to bacterial than eukaryotic \tn % Row Count 19 (+ 12) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{mitochondria}} come from a single {\emph{proteobacterium}} ancestor which could do aerobic respiration using O2 to make ATP} \tn % Row Count 22 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{plastids}} come from a single {\emph{cyanobacterium}} ancestor that could do photsynthesis} \tn % Row Count 24 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{ALL eukaryotes have mitochondria, not many have plastids \{\{ac\}\}} \tn % Row Count 26 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{anaerobic host cells may have benefited from aerobic endosymbionts as oxygen increased in the atmosphere \{\{ac\}\}} \tn % Row Count 29 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EUKARYOTIC DIVERSITY (PHYLOGENETIC TREE)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1649720169_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{(protists are yellow)}} \{\{ac\}\}\textbackslash{}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{THE GREENING OF EARTH}} \tn % Row 0 \SetRowColor{LightBackground} +4 billion years ago & Earth was created, lifeless for the first 2 billion years \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 1.2 billion years ago & cyanobacteria \& protists \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} +470 million years ago & plants colonized land \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} 500 million years ago & plants, fungi, \& animals moved to land \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} 385 million years ago & first forests \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANTS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{ancestors}} & red, green, \& brown algae \{\{nl\}\} multicellular \{\{nl\}\}eukaryotes\{\{nl\}\}photsynthetic autotrophs\{\{nl\}\}cellulose cell walls\{\{nl\}\} chlorplasts (chlorophyll a \& b)\{\{nl\}\} modernly only {\bf{charophytes}} share most traits w plants \tn % Row Count 11 (+ 11) % Row 1 \SetRowColor{white} {\emph{chloroplasts of land plants}} \{\{ar\}\} & cyanobacteria ➙ green algae (charophytes) ➙ land plants \tn % Row Count 14 (+ 3) % Row 2 \SetRowColor{LightBackground} moving to land... & 🅐 evolution of: \{\{nl\}\}{\bf{sporopollenin}} ⁠— protective polymer surrounding charophyte zygotes ➙ dry land \{\{nl\}\}🅑 BENEFITs: unfiltered sunlight, plenty CO2, nutrient-rich soil \{\{nl\}\}🅒 CHALLENGES: scarcity of water, lack of support against gravity \tn % Row Count 27 (+ 13) % Row 3 \SetRowColor{white} key traits in plants not found in charophytes & •alternation of generations\{\{nl\}\}•multicellular, dependent embryos\{\{nl\}\}•walled spores produced in sporangia\{\{nl\}\}•apical meristems \tn % Row Count 34 (+ 7) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANTS (cont)}} \tn % Row 4 \SetRowColor{LightBackground} {\emph{apical meristems}} \{\{ar\}\} & — {\emph{localized regions of cell division @ tips of roots \& shoots, mitotic division = +mineral \& nutrients }} \tn % Row Count 6 (+ 6) % Row 5 \SetRowColor{white} derived traits \{\{bb\}\} & •cuticle — waxy coating, prevents water loss\{\{nl\}\}•stomata — specialized pores, CO2-O2 exchange \{\{bb\}\} \tn % Row Count 12 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{\textasciicircum{}plants affect soil formation, roots stabilize soil and are nutrients when they decay, 50\% atmospheric O2 \{\{ac\}\}}}\textasciicircum{}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{HIGHLIGHTS OF PLANT EVOLUTION}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650303016_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANT CLASSIFICATION}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{vascular plants}} & vascular tissue for H2O/nutrient transport \{\{nl\}\}‣{\bf{xylem}}- conducts most H2O/minerals ({\emph{tracheids}} have lignin = water-conducting cells, provide structural support) \{\{nl\}\}‣{\bf{phloem}} - tubes of cells, distribute sugars, amino acids, other org. prod\{\{nl\}\}‣lignin = polymer that makes plants rigid, allowing them to grow tall \tn % Row Count 14 (+ 14) % Row 1 \SetRowColor{white} {\bf{nonvascular plants}} & bryophytes lack vascular tissue\{\{nl\}\}‣{\bf{rhizoids}} - root-like anchor \{\{nl\}\}‣{\bf{gametophytes}} = larger, live longer than sporophytes \{\{nl\}\}‣mature {\bf{sporophyte}} fully depends on gametophyte for nutrition \{\{nl\}\}‣limited to moist habitats \{\{nl\}\}{\emph{•liverworts\{\{nl\}\}•mosses\{\{nl\}\}•hornworts}} \tn % Row Count 27 (+ 13) % Row 2 \SetRowColor{LightBackground} {\emph{seedless vascular}} \{\{ar\}\} & ❋early vascular plants \{\{nl\}\}‣ {\bf{sporophytes}} = large/more complex gen.\{\{nl\}\}‣ {\emph{gametophyte}} \& {\emph{sporophyte}} are independent\{\{nl\}\}‣sperm swims through water to egg (like bryophytes)\{\{nl\}\}{\emph{•lycophytes (club mosses) \{\{nl\}\}•monilophytes (ferns)}} \tn % Row Count 38 (+ 11) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANT CLASSIFICATION (cont)}} \tn % Row 3 \SetRowColor{LightBackground} {\emph{seed plants}} \{\{ar\}\} & ❋reduced gametophytes, ovules, pollen\{\{nl\}\}‣ {\bf{seed}}= embryo + food supply + protective coat\{\{nl\}\}{\emph{•gymnosperms = naked seeds \{\{nl\}\}•angiosperms = enclosed seeds in ovaries}} (flowers \& fruits) \tn % Row Count 9 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{ALTERNATIONS OF GENERATIONS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650301751_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{gametophyte}} generation is {\emph{haploid}} and produces {\emph{haploid}} gametes by mitosis \{\{nl\}\} fusion of sperm+egg creates {\emph{diploid}} {\bf{sphorophyte}} and produces {\emph{haploid}} spores by meiosis \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{MULTICELLULAR, DEPENDENT EMBRYOS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650302108_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{embryo within female gametophyte tissue, placental transfer cells ➝ nutrients \{\{nl\}\}{\bf{embryophytes}} —embryo dependent on parent plant \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{WALLED SPORES PRODCUED IN SPORANGIS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650302458_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\emph{sporangia}}— multicellular organs that produce spores\{\{nl\}\} {\emph{sporopollenin}} (strong polymer) —in walls, resistant to harsh environments \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{OVULATE CONE}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650306204_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{ovule}}= {\emph{megaspore}} (haploid spore → female gametophyte) {\emph{+ protective layer}}(integument) \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{POLLEN CONE}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650306459_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{pollen grain}} = {\emph{microspores}} (haploid spores → male gametophyte) +{\emph{ protective wall }}(w/ sporopollenin) \{\{nl\}\}\{\{nl\}\} **pollination - transfer of pollen to seed plant's ovules\{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EVOLUTION OF ROOTS \& LEAVES}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650304745_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EVOLUTION OF ROOTS \& LEAVES}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650304496_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{FLOWERS \& FRUITS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650306997_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{stamen}} ={\emph{ filament}} (stalk) + {\emph{anther}} (sac produces pollen) \{\{nl\}\}{\bf{carpel}} = ovary (@ base) + style + stigma (where pollen is received) \{\{nl\}\}ovary - 1/+ ovules} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{FUNGI}} \tn % Row 0 \SetRowColor{LightBackground} oldest fossils & 460 million years ago, terrestrial \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{heterotrophs}} that feed by absorption \{\{ac\}\}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{FEED BY ABSORPTION secrete hydrolytic enzymes to break down complex molecules → small org. comp \{\{ac\}\}} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{chitin}} cell walls} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} diversification & •mold (multicellular) \{\{nl\}\}•yeast (unicellular) \tn % Row Count 10 (+ 3) % Row 5 \SetRowColor{white} life cycles \& reproduction & ‣most propagate by producing many spores, sexually or asexually \tn % Row Count 14 (+ 4) % Row 6 \SetRowColor{LightBackground} {\emph{key role in land plant colonization}} \{\{ar\}\} \{\{bb\}\} & symbiotic interactions... \{\{bb\}\} \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{\textasciicircum{}fungi/other decomposers (fungi/bacteria) break down dead organisms and return nutrients to physical environment}}\textasciicircum{} \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{FUNGAL ADAPTATIONS TO LAND}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650397108_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.16 cm} x{5.84 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{SYMBIOTIC INTERACTIONS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{mutualism}} & benefits BOTH \{\{nl\}\}\{\{nl\}\}plant + fungi ({\emph{endophytes}}) inside leaves/other \{\{nl\}\}•plant provide nutrition, some endophytes make toxins that deter herbivores/pathogens \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} {\bf{parasitism}} & benefits one, harms other \{\{nl\}\}\{\{nl\}\}fungi absorb nutrients from host cells \tn % Row Count 9 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{lichen}} & {\emph{photosynthetic microorganism}}(algae/cyanobacteria)-{\emph{fungus}} \{\{nl\}\}•fungi benefit from carbs produced by algae/cyanobacteria \{\{nl\}\}•microorganism is protected by fungal filaments, gather moisture/nutrients \tn % Row Count 17 (+ 8) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\emph{lichens break down surface \& promote soil formation so plants can grow, on land 420 mya}} \{\{ar\}\}} \tn % Row Count 19 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{mycorrhizae}} & {\emph{plant-fungal}} — fungal hyphae transfer nutrients (phosphate/others) to plant \{\{nl\}\}\{\{nl\}\} earliest land plants {\emph{lacked true roots/leaves}} \tn % Row Count 24 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{MYCORRHIZAE}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650399883_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{THE RISE OF ANIMAL DIVERSITY}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650400443_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{all animals ({\emph{metazoa}}) share a common ancestor and likely evolve from multiple single-celled eukaryotes ({\emph{protist}}) \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EUKARYOTIC SUPERGROUPS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650400684_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{sponges and choanoflagellates' (protists) similarities = animals evolved from choanoflagellate-like ancestor over 700 millions years ago \{\{ac\}\}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{DIVERSIFICATION OF ANIMALS}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650406991_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{①all animals share a common ancestor \{\{nl\}\}② sponges are sister group to ALL other animals \{\{nl\}\}③eumatozoa = animals with tissues \{\{nl\}\}④ most animal phyla belong to Bilaterian clade \{\{nl\}\}⑤ most animals are invertebrates} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{EARLY-DIVERGING ANIMAL GROUPS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\emph{sponges \& cnidarians diverged from all other animals early on }} \{\{ac\}\}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{sponges}} (PORIFERA) & •{\emph{basal animals}} \{\{nl\}\}•lack true tissues \{\{nl\}\}•filter feeders: capture small particles in water\{\{nl\}\}water is drawn through pores into central cavity and flows out through an opening at the top \tn % Row Count 10 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ANIMALS WITH TISSUES}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{eumetazoans}} \{\{nl\}\} include cnidarians and all others & {\emph{"true animals"}} = tissues \{\{nl\}\}have symmetrical bodies\{\{nl\}\}(radial or bilateral) \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} •radial symmetry \{\{ar\}\} \{\{nl\}\}{\emph{cnidarians}} (jellyfish, anemones) & - single, central axis \{\{nl\}\}most animals are sessile\{nl\}\}➢2 embryonic tissue layers \{\{nl\}\}→endoderm\{\{nl\}\}→ectoderm \tn % Row Count 12 (+ 7) % Row 2 \SetRowColor{LightBackground} •bilateral symmetry \{\{ar\}\} \{\{bb\}\} & - 2 axes \{\{nl\}\}animals that move actively\{\{nl\}\}➢3 germ layers\{\{nl\}\}→endoderm\{\{nl\}\}→ectoderm\{\{nl\}\}→mesoderm \{\{bb\}\} \tn % Row Count 19 (+ 7) % Row 3 \SetRowColor{white} {\bf{cnidarians}} & tissues + radial symmetry, blind digestive system, carnivores, lack brain/muscles, nerve net (simplest) \tn % Row Count 25 (+ 6) % Row 4 \SetRowColor{LightBackground} {\bf{chordata}} & bilaterians, vertebrates, complete digestive tract \tn % Row Count 28 (+ 3) % Row 5 \SetRowColor{white} {\bf{bilateral invertebrates}} \{\{bb\}\} & 95\% animals \tn % Row Count 30 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{EUMATOZOAN SYMMETRY}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/nanana00_1650408450_speciationmodels.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{BODY CAVITIES}} \tn % Row 0 \SetRowColor{LightBackground} most bilaterians posses a a {\bf{body cavity}} ({\emph{coelom}}) & - fluid/air filled space between digestive tract \& outer body wall \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & cushions organs, acts as hydrostatic skeleton, organs move independently of body wall \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} & \{\{nl\}\}\{\{nl\}\}\{\{nl\}\}\{\{nl\}\}\{\{nl\}\}\{\{nl\}\}\{\{nl\}\}\{\{nl\}\} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}