BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

BROAD PATTERNS OF EVOLUTION

Evolution occurs at the population level, evolutionary impact of natural selection is seen in how a population changes over time.

THE EVOLUT	ION OF POPULATIONS
evolution	changes in allele frequency
allele frequency	(all add up to 1)
population	group individuals of the same species that live in the same area & interbreed to produce fertile offspring
genetic variation	differences in genen composition
sources of genetic variation	sexual reproduction
	mutation (change in nucleotide sequence)
	<i>point mutations</i> (single nucleotide change) ex. sickle-cell
	delete, disrupt, duplicate, rearrange loci
genetic varia	tion is required for evolution, but does not guarantee a

population will	
-----------------	--

CHANGE	IN ALLELE FREQUENCY	
	effect on allele frequency	causes
genetic drift	unpredictable fluctuation of alleles, reduces genetic variation, can limit natural selection	founder effect, pop. bottleneck
founder effect	few individuals isolated, diff. allele freque- ncies in small founder pop.	chance

CHANGE II	N ALLELE FREQUENCY (cont)	
bottleneck effect	reduced genetic variation and increased frequency of harmful alleles	sudden enviro- nmental change
	nisms change allele frequency = gener natural selection (consistent adaptive e	
SEXUAL SI	ELECTION	
what is it?	individuals w certain characteri to find mates	istics are more likely
sexual dimorphism	marked differences between se	exes (ex. pavo real)
intrasexual selection	selection within same sex for n	nates
intersexual selection	one sex is choosy with mates	
sexu	al selection is natural selection for ma	ating success
NATURAL	SELECTION MODES	
direct- ional	conditions favor individuals at one er range	nd of the phenotypic
disruptive	conditions favor individuals at both e phenotypic range	xtremes of
stabil- izing	conditions favor intermediate variant	S
natural sele	ection consistently causes adaptive ev phenotypes	olution by acting on

Hardy-Weinberg	g Principle: Equilibrium Population
condition	consequence if condition is not kept
1. no mutations	gene pool is modified
2. **random mating	inbreeding = no random mixing of gametes, genotype frequencies change

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 2 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

THE ORIGIN OF SPECIES

Hardy-Weinberg	Principle: Equilibrium Population (cont)
3. no natural selection	allele frequencies change
4. very large pop. size	in small pop. allele frequencies change by chance (<i>genetic drift</i>)
5. no gene flow	gene flow can alter allele frequencies

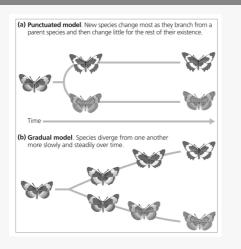
CAUSES OF EVOLUTION

(Causes of Evolution
Process	Consequence
Mutation	Creates new alleles; increases variability
Gene flow	Increases similarity of different populations
Genetic drift	Causes random change of allele frequencies; can eliminate alleles
Nonrandom mating	Changes genotype frequencies, but not allele frequencies
Natural and sexual selection	Increases frequency of favored alleles; produces adaptations

DEFINITION OF SF	PECIES
concept	defines species by
biological	reproductive compatability
reproductive isolation → new species	gene flow between populations holds gene pool together, species pop. resemble each other
limitations	gene flow between morphologically & ecolog- ically distinct species (ex. grolar bear)
morphological	structural features
ecological	ecological niche, interactions w nonliving and living environment

speciation	one species splits into two or more species
speciation rates	range from 4,000 y to 40 million y (avg. 6.5 my)
allopatric	geographically isolated populations
	population -gene flow interrupted→ subpop- ulation
	mutation, genetic drift, natural selection, reproductive isolation
reproductive isolation	can't breed bc of differences
behavioral isolation	prezygotic barrier, specific mates
sympatric	population (no geographic barrier)→ new species
	reproductive barrier, reduced gene flow
	polyploidy, habitat differentiation, sexual selection
polyploidy	extra chromosomes
	auto: same species allo: diff species
habitat differentiation	new ecological niches
sexual selection	female selecting mates
microevolution (speciation)	many speciations, extinctions → macroevol- ution

based on potential to interbreed, not physical similarity


By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 3 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

SPECIATION MODELS

punctuated = rapid speciation gradual = slow speciation

REPRODUCTIVE ISOLATION

reproductive barriers	depend on envir	onmental & genetic factors
Prezygotic Barriers	prevent mating l	between species
	geographical	physical barrier (rivers, mountains)
	habitat/ecol- ogical	same area, diff habitats
	temporal	diff breeding times
	behavioral	unique courtship rituals
	mechanical	morphological diff
	gametic	cannot fertilize
Postzygotic Barriers	prevent a viable	, fertile hybrid

REPRODUCTIVE ISOLATION (cont)

	reduced hybrid viability	poor development/survival
	reduced hybrid fertility	fertile hybrid
	hybrid breakdown	infertile 2nd gen
Hybrid Zones	diff species mate, incom	plete reproductive barriers
	novel genetic variation o	utcomes =*
reinforcement	hybrids cease	← hybrids less fit
fusion	two species fuse	← weakened rep. barriers
stability	continued hybrids	← hybrids equally fit
bio	logical barriers that imped	e fertile offspring

THE GEOLOGIC RECORD

Eon	Era	Period	Epoch	Age (Millions of Years Ago)
ſ		Quaternary	Holocene	0.01
			Pleistocene	0.01
			Pliocene	2.6
	Cenozoic	Neogene	Miocene	5.3 23
			Oligocene	
		Paleogene	Eocene	33.9 56
			Paleocene	
	Mesozoic	Cretaceous		66 145
Phan-		Jurassic		201
		Triassic		201
		Permian		299
		Carboniferous	5	359
		Devonian		359 419
	Paleozoic	Silurian		419
		Ordovician		444
L		Cambrian		485 541
Proter-		Ediacaran		635
ozoic				
Archaean				2,500
Hadean			Approx	4,000 x. 4,600

Sponsored by Readable.com Measure your website readability! https://readable.com

By nanana00 Publis cheatography.com/nanana00/ Last u

Published 19th April, 2022. Last updated 20th April, 2022. Page 4 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nanana00 via cheatography.com/145954/cs/31507/

TECTONIC PLATES THEORY	FOSSIL FORMATION
Crust Mantle Outer core Inner core	<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>
continents are part of plates of Earth's crust, floating on hot mantle	FOSSIL DATING
	relative age determined by rock strata sequence
3 occasions (1 billion, 600 million, and 250 million years ago) when most of the landmasses of earth came together to form a supercont-	younger stratum has more older stratum has older fossils recent fossils
inent	absolute age determine through radiometric dating
HISTORY OF EARTH	radioactive "parent" isotope decays to "daughter" isotope at a constant rate
FOSSILS	RADIOMETRIC DATING
fossils are the traces of ancient life, naturally preserved, but an incomplete chronicle of evolution	If the half-life of carbon-14 is about 5,730 years, then a fossil that has 1/8th the normal proportion of carbon-14 to carbon-12 should be
<pre>macroe evolution above the species level, interspecific variation volution</pre>	about how many years old? 5730 Years X 3= 17190 years CREATIONS ACCORDING TO FOSSILS
microe-evolutionary change in allele frequencies in a populationvolutionover generations, <i>intraspecific variation</i>	earliest prokaryote fossils form <i>stromatolites</i> dating back 3.5
favor species that existed for a long time, were abundant/widesp- read, had hard shells, skeletons	(ARCHAEAN EON) BYA, sole inhabitants for 1.5 BY
	increase in atmospheric 2.7 BYA

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 5 of 15.

Measure your website readability! https://readable.com

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

CREATIONS ACCORDING TO FOSSILS (cont)

cyanobacteria, other photos- ynthesizers	led to extinction of many
earliest eukaryote fossils (PROTEROZOIC EON)	1.8 BYA, gave rise to multicellular organisms
jawed vertebrates (PHANEROZOIC EON)	440 MYA
Cambrain explosion (535-525 mya)	+diversity, unique mammalian features
tetrapods (PALOZOIC ERA)	375 MYA colonized land
mammals	120 MYA, from synapsids

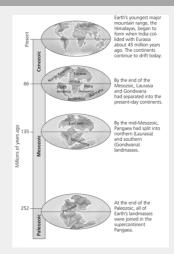
MASS EXTINCTIONS

can be caused by:

Habitat destruction and/or unfavorable environmental change

Biological causes (factors)-Origin of one new species can spell doom for another

Permian Mass	96% marine life when extinct due to intense
Extinction	volcanisms
(252mya)	Paleozoic to Mesozoic era
Cretaceous	+50% of all marine animals, many terrestrial
Mass Extinction	plants and animals, dinosaurs (except birds) due
(66mya)	to meteorite
	Mesozoic to Cenozoic era


5-10 million years for diversity to recover

mass extinctions alter ecological communities and remove lineages, forever change the course of evolution and can also pave the way for *adaptive radiations*

ADAPTIVE RADIATION

	the evolution of many diversely adapted species from a common ancestor that allows new species to occupy different habitats		
		ex. mammals after extinction of dinosaurs	
	evolution of novel characteristics	ex. rise of photosynthetic organisms	
	colonization of new regions	organisms colonize new enviro- nments with little competition	

CONTINENTAL DRIFT DURING PHANEROZOIC EON

Pangea (250 mya), organisms adapt (speciation) or go extinct

when continents drift can result in allopatric speciation

GENETIC MECHANISMS			
develo- pmental	program development, influence rate, patterns	timing, spatial	
genes			
hetero- chrony	evolutionary change in the rate or timing of developmental events	ex. human vs chimpanzee jaw	

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 6 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

GENETIC M	ECHANISMS (cont)		
homeotic genes	determine the organization of basic features		
hox genes	a class of homeotic genes, provide positional ation during animal development	inform-	
evolut- ionary novelties	changes at the genetic level lead to developn changes at the phenotypic level	nental	
exapta- tions	structures that originally played one role but gradually acquired a different role	ex. bird feathers	

EUKARYOTES ARE "COMBINATION" ORGANISMS

Feature Original Source	
DNA replication enzymes	Archaeal
Transcription enzymes	Archaeal
Translation enzymes	Mostly archaeal
Cell division apparatus	Mostly archaeal
Endoplasmic reticulum	Archaeal and bacterial
Mitochondrion	Bacterial
Metabolic genes	Mostly bacterial

consequence of endosymbiosis

PROTIST

is any eukaryotic organism that is not an animal, plant, or fungus

first eukaryote was a unicellular protist and most eukaryotes are protists

structural and functional diversity, most are aquatic, most are unicellular

complex at the cellular level, though simple when compared to eukaryotes

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 7 of 15.

PROTIST (co	ont)
nutritional diversity:	<i>photoautotroph</i> = producers (photosynthetic) use energy from light (or inorganic chemicals) to convert CO2 to organic compounds
	<i>heterotroph</i> = consumers
	parasites =
	mixotroph =
photosynt- hetic protists	<i>main producers in aquatic community</i> biomass of photosynthetic protists is limited by the availability of nitrogen, phosphorus, or iron diatoms, dinoflagelletes, multicellular algae, others <i>blooms</i> dramatic increase in abundance
symbiotic protists	some are parasites that harm their hosts ex. photosynthetic dinoflagellets provide food for coral reefs ex. wood-digesting protists break down cellulose in the guts of termites
effect on human health	
	trypanosoma = excavate that causes sleeping sickness apicomplexans = alveolate parasites

ex. plasmodium - causes malaria

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

ORIGINS OF	COMPLEY	

multicellular	collections of connected cells, little to no different-
colonies	iation, can be simple or complex

Multicellular organisms with differentiated cells likely originated from multiple different ancestors

- 1. origin of cyanobacteria
- 2. origin of mitochondria
- **3.** origin of plastid (chloroplast)
- 4. origin of multicellular eukaryotes
- 5. origin of fungal-plant symbioses

EUKARYOTE SUPERGROUPS

Excavata (unicellular protists)

•diplomonads;parabasalids —

lack plastids, cannot do photosynthesis, reduced mitochondria, mostly anaerobic

▶euglenozoans—

most have 2 flagella, diverse, inclue predatory heterotrphs,

photoautotrophs, parasites

ex. trypanosoma - parasitic infection that causes sleeping sickness

SAR (Stramenopiles, Alveolates, Rhizarians)

includes most important photosynthetic organisms)

diatoms — diverse photosynthetic unicellular algae
 can affect

brown algae (seaweed) — largest & most complex, multicellular, mostly marine

brown due to carotenoids in plastid

anchored by holdfast, stem-like stipe supporting leaflike blades

EUKARYOTE SUPERGROUPS (cont)

Archaeplastids

red algae — 2nd largest, mostly multicellular, can absorb green
& blue light
red due to phycoerythrin pigment
▶green algae— very similar to land plants, some are unicellular
Schlorophytes — marine, terrestrial, mostly freshwater, multicell-
ular, unicellular (free or symbiotic)
→charophytes — most closely related to land plants
▶ plants

chloroplasts of land plants *cyanobacteria* → *green algae* → *land plants*

EUKARYOTE SUPERGROUPS

Supergroup	Major Clades	Specific Example
Excavata	Diplomonads, parabasalids, euglenozoans	Euglena
SAR	Stramenopiles, alveolates, rhizarians	Plasmodium
Archaeplastida	Red algae, green algae, plants	Chlamydomonas
Unikonta	Amoebozoans, opisthokonts	Amoeba

DIVERSITIFICATION OF EUKARYOTES

eukaryotes	
	a) plants b) animals c) fungi, molds, mushrooms, yeast d) protists
early eukaryotes	date back <i>2.7 billion years ago</i> unicellular, with nucleus, membrane, cytoskeleton, varied size & shape
diverse eukaryotes	1.8 billion years ago novel biological features evolved: multicellularity, sexual life cycles, eukaryotic photosynthesis

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 8 of 15. Sponsored by **Readable.com** Measure your website readability!

https://readable.com

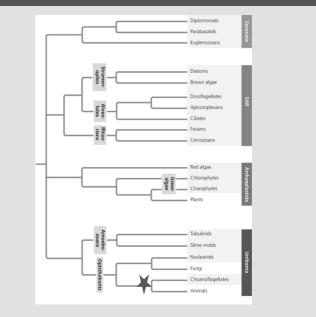
BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

DIVERSITIFICATION OF EUKARYOTES (cont)

large	635-541 million years ago (Ediacaran period) soft-b-
eukaryotes	odied organisms
	hard-bodied organisms 535-525 mya (Cambrian
	explosion)

ORIGIN OF MITOCHONDRIA & PLASTIDS

plastid	membrane-bound organelle (plants, algae, others) ex. chloroplast
endosy- mbiont theory	mitochondria and plastids were formerly small bacteria that began living within larger cells
key	•inner membranes are similar (transport proteins) to
evidence	bacteria plasma membrane
	•replication is similar to bacteria cell division
	 have circular DNA like bacteria
	•transcribe/translate own DNA into proteins
	•ribosomes more similar to bacterial than eukaryotic


mitochondria come from a single *proteobacterium* ancestor which could do aerobic respiration using O2 to make ATP

plastids come from a single *cyanobacterium* ancestor that could do photsynthesis

ALL eukaryotes have mitochondria, not many have plastids

anaerobic host cells may have benefited from aerobic endosymbionts as oxygen increased in the atmosphere

EUKARYOTIC DIVERSITY (PHYLOGENETIC TREE)

(protists are yellow) \

THE GREENING OF EARTH

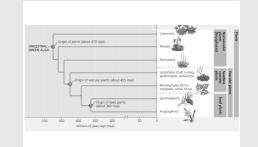
+4 billion years ago	Earth was created, lifeless for the first 2 billion years
1.2 billion years ago	cyanobacteria & protists
+470 million years ago	plants colonized land
500 million years ago	plants, fungi, & animals moved to land
385 million years ago	first forests

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 9 of 15. Sponsored by **Readable.com** Measure your website readability!

https://readable.com


BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

PLANTS		
ancestors	red, green, & brown algae multicellular eukaryotes photsynthetic autotrophs cellulose cell walls chlorplasts (chlorophyll a & b) modernly only charophytes share most traits w plants	
chloroplasts of land plants	cyanobacteria → green algae (charo- phytes) → land plants	
moving to land	 □ evolution of: sporopollenin — protective polymer surrounding charophyte zygotes → dry land □ BENEFITs: unfiltered sunlight, plenty CO2, nutrient-rich soil □ CHALLENGES: scarcity of water, lack of support against gravity 	
key traits in plants not found in charophytes	 alternation of generations multicellular, dependent embryos walled spores produced in sporangia apical meristems 	

PLANTS (cont)

apical	— localized regions of cell division @ tips of roots &
meristems	shoots, mitotic division = +mineral & nutrients
derived traits	 cuticle — waxy coating, prevents water loss stomata — specialized pores, CO2-O2 exchange
plants affect soil formation, roots stabilize soil and are nutrients when they decay, 50% atmospheric O2	

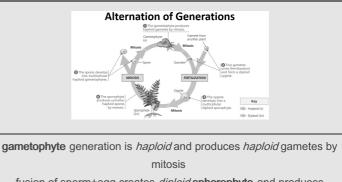
HIGHLIGHTS OF PLANT EVOLUTION

PLANT CLASSIFICATION

vascular	vascular tissue for H2O/nutrient transport
plants	•xylem- conducts most H2O/minerals (tracheids have
	lignin = water-conducting cells, provide structural support)
	▶ phloem - tubes of cells, distribute sugars, amino acids,
	other org. prod
	▶lignin = polymer that makes plants rigid, allowing them to
	grow tall

By nanana00

cheatography.com/nanana00/


Published 19th April, 2022. Last updated 20th April, 2022. Page 10 of 15.

PLANT CLASSIFICATION (cont)

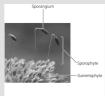
BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

nonvascular plants	bryophytes lack vascular tissue •rhizoids - root-like anchor •gametophytes = larger, live longer than sporop- hytes •mature sporophyte fully depends on gametophyte for nutrition •limited to moist habitats • <i>liverworts</i> •mosses •hornworts
seedless vascular	 *early vascular plants * sporophytes = large/more complex gen. * gametophyte & sporophyte are independent *sperm swims through water to egg (like bryophytes) *lycophytes (club mosses) *monilophytes (ferns)
seed plants	 reduced gametophytes, ovules, pollen seed= embryo + food supply + protective coat gymnosperms = naked seeds angiosperms = enclosed seeds in ovaries (flowers & fruits)

ALTERNATIONS OF GENERATIONS

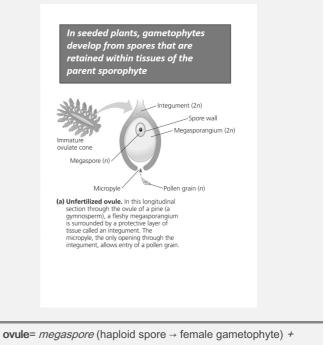
fusion of sperm+egg creates *diploid* **sphorophyte** and produces *haploid* spores by meiosis

MULTICELLULAR, DEPENDENT EMBRYOS



embryo within female gametophyte tissue, placental transfer cells \Rightarrow

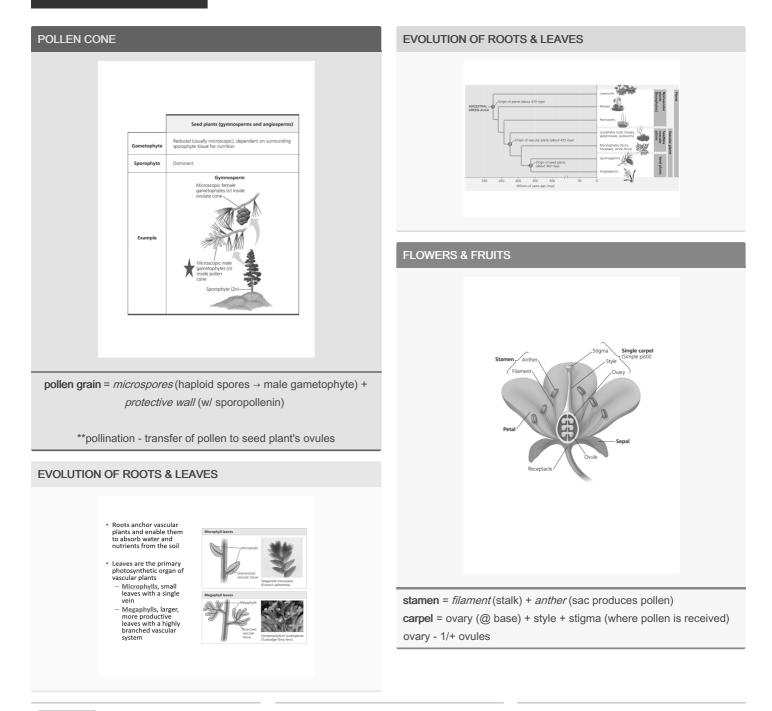
nutrients


embryophytes ---embryo dependent on parent plant

WALLED SPORES PRODCUED IN SPORANGIS

sporangia— multicellular organs that produce spores *sporopollenin* (strong polymer) —in walls, resistant to harsh environments

OVULATE CONE


protective layer(integument)

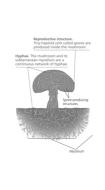
By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 11 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

By nanana00


cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 12 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

FUNGI			
oldest fossils	460 million years ago, terrestrial		
heterot	rophs that feed by absorption		
FEED BY ABSORPTION secrete hydrolytic enzymes to break down complex molecules → small org. comp			
chitin cell walls			
diversification	•mold (multicellular) •yeast (unicellular)		
life cycles & reprod- uction	 most propagate by producing many spores, sexually or asexually 		
key role in land plant colonization	symbiotic interactions		
fungi/other decomposers (fungi/bacteria) break down dead organisms and return nutrients to physical environment			

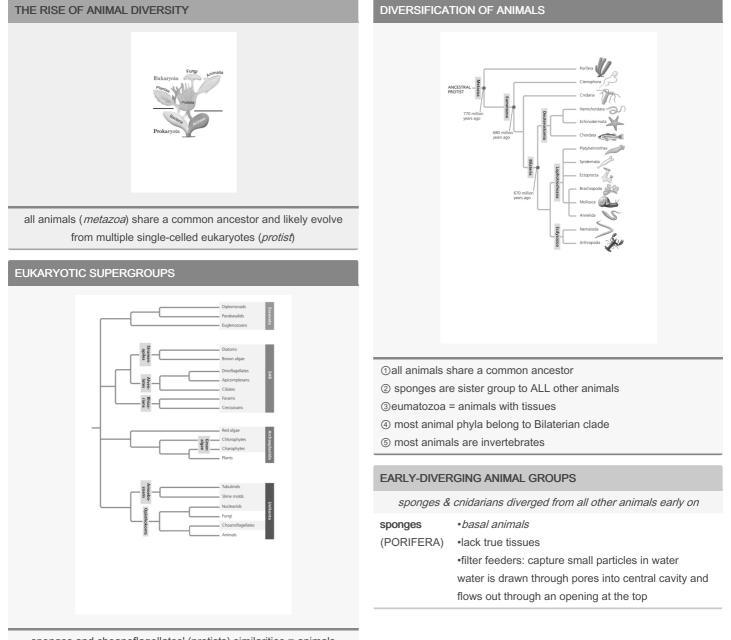
FUNGAL ADAPTATIONS TO LAND

SYMBIOTIC INTERACTIONS

mutualism	benefits BOTH		
	plant + fungi (<i>endophytes</i>) inside leaves/other •plant provide nutrition, some endophytes make toxins that deter herbivores/pathogens		
parasitism	benefits one, harms other fungi absorb nutrients from host cells		
lichen	 <i>photosynthetic microorganism</i>(algae/cyanobac- teria)-<i>fungus</i> •fungi benefit from carbs produced by algae/cyanob- acteria •microorganism is protected by fungal filaments, gather moisture/nutrients 		
lichens b	reak down surface & promote soil formation so plants can grow, on land 420 mya		
mycorr- hizae	<i>plant-fungal</i> — fungal hyphae transfer nutrients (phosp- hate/others) to plant		

earliest land plants lacked true roots/leaves

MYCORRHIZAE



By nanana00

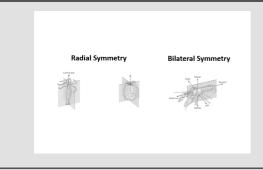
cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 13 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

sponges and choanoflagellates' (protists) similarities = animals evolved from choanoflagellate-like ancestor over 700 millions years ago

By nanana00


cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 14 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nanana00 via cheatography.com/145954/cs/31507/

ANIMALS WITH	TISSUES	BODY CAVITIES	
eumetazoans include cnidarians and	<i>"true animals"</i> = tissues have symmetrical bodies (radial or bilateral)	most bilaterians posses a a body cavity (<i>coelom</i>)	 fluid/air filled space between digestive tract & outer body wall
all others •radial symmetry	- single, central axis most animals are sessile{nl}}≫2 embryonic tissue		cushions organs, acts as hydrostatic skeleton, organs move independently or body wall
<i>cnidarians</i> (jellyfish, anemones)	layers →endoderm →ectoderm		
•bilateral symmetry	- 2 axes animals that move actively >3 germ layers →endoderm →ectoderm →mesoderm		
cnidarians	tissues + radial symmetry, blind digestive system, carnivores, lack brain/muscles, nerve net (simplest)		
chordata	bilaterians, vertebrates, complete digestive tract		
bilateral invert- ebrates	95% animals		

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 15 of 15.