BROAD PATTERNS OF EVOLUTION

Evolution occurs at the population level, evolutionary impact of natural selection is seen in how a population changes over time.

THE EVOLUTION	OF POPULATIONS

evolution	changes in allele frequency		
allele frequency	(all add up to 1)		
irequency			
population	group individuals of the same species that live in the same area & interbreed to produce fertile offspring		
genetic variation	differences in genen composition		
sources of genetic variation	sexual reproduction		
	mutation (change in nucleotide sequence)		
	<i>point mutations</i> (single nucleotide change) ex. sickle-cell		
	delete, disrupt, duplicate, rearrange loci		
genetic varia	tion is required for evolution, but does not guarantee a		

population wil	1
----------------	---

CHANGE IN ALLELE FREQUENCY		
	effect on allele frequency	causes
genetic drift	unpredictable fluctuation of alleles, reduces genetic variation, can limit natural selection	founder effect, pop. bottleneck
founder effect	few individuals isolated, diff. allele freque- ncies in small founder pop.	chance

CHANGE IN ALLELE FREQUENCY (cont)		
bottleneck effect	reduced genetic variation andsudden enviro-increased frequency of harmfulnmentalalleleschange	
3 mechanisms change allele frequency = genetic drift, gene flow, natural selection (consistent adaptive evolution)		
SEXUAL SE	ELECTION	
what is it?	individuals w certain characteristics are more likely to find mates	
sexual dimorphism	marked differences between sexes (ex. pavo real)	
intrasexual selection	selection within same sex for mates	
intersexual selection	one sex is choosy with mates	
sexu	al selection is natural selection for mating success	

NATURAL SELECTION MODES		
direct-	conditions favor individuals at one end of the phenotypic	
ional	range	
disruptive	conditions favor individuals at both extremes of phenotypic range	
stabil- izing	conditions favor intermediate variants	
natural selection consistently causes adaptive evolution by acting on phenotypes		
Hardy-Weinberg Principle: Fouilibrium Population		

naruy-weinberg Principie. Equilibrium Population		
condition	consequence if condition is not kept	
1. no	gene pool is modified	
mutations		
2. **random	inbreeding = no random mixing of gametes,	
mating	genotype frequencies change	

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 2 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

THE ORIGIN OF SPECIES

Hardy-Weinberg Principle: Equilibrium Population (cont)		
3. no natural selection	allele frequencies change	
4. very large pop. size	in small pop. allele frequencies change by chance (<i>genetic drift</i>)	
5. no gene flow	gene flow can alter allele frequencies	

CAUSES OF EVOLUTION

Causes of Evolution		
Process	Consequence	
Mutation	Creates new alleles; increases variability	
Gene flow	Increases similarity of different populations	
Genetic drift	Causes random change of allele frequencies; can eliminate alleles	
Nonrandom mating	Changes genotype frequencies, but not allele frequencies	
Natural and sexual selection	Increases frequency of favored alleles; produces adaptations	

DEFINITION OF SPECIES		
defines species by		
reproductive compatability		
gene flow between populations holds gene pool together, species pop. resemble each other		
gene flow between morphologically & ecolog- ically distinct species (ex. grolar bear)		
structural features		
ecological niche, interactions w nonliving and living environment		

speciation	one species splits into two or more species
speciation rates	range from 4,000 y to 40 million y (avg. 6.5 my)
allopatric	geographically isolated populations
	population -gene flow interrupted→ subpop- ulation
	mutation, genetic drift, natural selection, reproductive isolation
reproductive isolation	can't breed bc of differences
behavioral isolation	prezygotic barrier, specific mates
sympatric	population (no geographic barrier)→ new species
	reproductive barrier, reduced gene flow
	polyploidy, habitat differentiation, sexual selection
polyploidy	extra chromosomes
	auto: same species allo: diff species
habitat differentiation	new ecological niches
sexual selection	female selecting mates
microevolution (speciation)	many speciations, extinctions → macroevol- ution

based on potential to interbreed, not physical similarity

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 3 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

SPECIATION MODELS

punctuated = rapid speciation gradual = slow speciation

REPRODUCTIVE ISOLATION		
reproductive barriers	depend on environmental & genetic factors	
Prezygotic Barriers	prevent mating between species	
	geographical	physical barrier (rivers, mountains)
	habitat/ecol- ogical	same area, diff habitats
	temporal	diff breeding times
	behavioral	unique courtship rituals
	mechanical	morphological diff
	gametic	cannot fertilize
Postzygotic Barriers	prevent a viable, fertile hybrid	

REPRODUCTIVE ISOLATION (cont)

	reduced hybrid viability	poor development/survival
	reduced hybrid fertility	fertile hybrid
	hybrid breakdown	infertile 2nd gen
Hybrid Zones	diff species mate, incom	plete reproductive barriers
	novel genetic variation o	utcomes =*
reinforcement	hybrids cease	← hybrids less fit
fusion	two species fuse	← weakened rep. barriers
stability	continued hybrids	← hybrids equally fit
biological barriers that impede fertile offspring		

THE GEOLOGIC RECORD

Eon	Era	Period Epoch Age (Millions of Years Ago)		
ſ		Quaternary	Holocene	
			Pleistocene	0.01
			Pliocene	2.6
	Cenozoic	Neogene	Miocene	5.3
			Oligocene	23
		Paleogene	Eocene	33.9 56
			Paleocene	50
Phan- erozoic	Mesozoic	Cretaceous		145
		Jurassic 201		
		Triassic		252
		Permian		299
		Carboniferou	S	359
	Paleozoic	Devonian		419
		Silurian		444
		Ordovician		485
Ĺ		Cambrian		541
Proter-		Ediacaran		635
ozoic				2,500
Archaean				4,000
Hadean			Approx	

.....

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 4 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

TECTONIC PLATES THEORY	FOSSIL FORMATION
Crust Mantle Outer core Inner core	<list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item>
continents are part of plates of Earth's crust, floating on hot mantle	FOSSIL DATING
	relative age determined by rock strata sequence
3 occasions (1 billion, 600 million, and 250 million years ago) when most of the landmasses of earth came together to form a supercont-	younger stratum has more older stratum has older fossils recent fossils
inent	absolute age determine through radiometric dating
HISTORY OF EARTH	radioactive "parent" isotope decays to "daughter" isotope at a constant rate
Colonization Golonization Animals Multicellular Single-celled Single-cel	half-life known time required for half parent isotope to decay RADIOMETRIC DATING $u = u = u = u = u = u$
fossils are the traces of ancient life, naturally preserved, but an incomplete chronicle of evolution	If the half-life of carbon-14 is about 5,730 years, then a fossil that ha 1/8th the normal proportion of carbon-14 to carbon-12 should be about how many years old?5730 Years X 3= 17190 years
macroe evolution above the species level, <i>interspecific variation</i> volution	
microe-evolutionary change in allele frequencies in a populationvolutionover generations, <i>intraspecific variation</i>	CREATIONS ACCORDING TO FOSSILS earliest prokaryote fossils form stromatolites dating back 3.5
favor species that existed for a long time, were abundant/widesp- read, had hard shells, skeletons	(ARCHAEAN EON) BYA, sole inhabitants for 1.5 BY
	increase in atmospheric 2.7 BYA oxygen

By nanana00 cheatography.com/nanana00/

Cheatography

Published 19th April, 2022. Last updated 20th April, 2022. Page 5 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

CREATIONS ACCORDING TO FOSSILS (co	nt)
------------------------------------	-----

cyanobacteria, other photos- ynthesizers	led to extinction of many
earliest eukaryote fossils (PROTEROZOIC EON)	1.8 BYA, gave rise to multicellular organisms
jawed vertebrates (PHANEROZOIC EON)	440 MYA
Cambrain explosion (535-525 mya)	+diversity, unique mammalian features
tetrapods (PALOZOIC ERA)	375 MYA colonized land
mammals	120 MYA, from synapsids

MASS EXTINCTIONS

can be caused by:

Habitat destruction and/or unfavorable environmental change

Biological causes (factors)-Origin of one new species can spell doom for another

Permian Mass	96% marine life when extinct due to intense
Extinction	volcanisms
(252mya)	Paleozoic to Mesozoic era
Cretaceous	+50% of all marine animals, many terrestrial
Mass Extinction	plants and animals, dinosaurs (except birds) due
(66mya)	to meteorite
	Mesozoic to Cenozoic era

5-10 million years for diversity to recover

mass extinctions alter ecological communities and remove lineages, forever change the course of evolution and can also pave the way for *adaptive radiations*

ADAPTIVE RADIATION

		ely adapted species from a common pecies to occupy different habitats
may follow:	mass extinctions	ex. mammals after extinction of dinosaurs
	evolution of novel characteristics	ex. rise of photosynthetic organisms
	colonization of new regions	organisms colonize new enviro- nments with little competition

CONTINENTAL DRIFT DURING PHANEROZOIC EON

Pangea (250 mya), organisms adapt (speciation) or go extinct

when continents drift can result in allopatric speciation

GENETIC MECHANISMS		
develo- pmental genes	program development, influence rate patterns	, timing, spatial
hetero- chrony	evolutionary change in the rate or timing of developmental events	ex. human vs chimpanzee jaw

By nanana00 Publ cheatography.com/nanana00/ Last

Published 19th April, 2022. Last updated 20th April, 2022. Page 6 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

GENETIC MECHANISMS (cont)		
homeotic genes	determine the organization of basic features	
hox genes	a class of homeotic genes, provide positional ation during animal development	inform-
evolut- ionary novelties	changes at the genetic level lead to developn changes at the phenotypic level	nental
exapta- tions	structures that originally played one role but gradually acquired a different role	ex. bird feathers

EUKARYOTES ARE "COMBINATION" ORGANISMS

Feature	Original Source
ONA replication enzymes	Archaeal
Transcription enzymes	Archaeal
Translation enzymes	Mostly archaeal
Cell division apparatus	Mostly archaeal
Endoplasmic reticulum	Archaeal and bacterial
Mitochondrion	Bacterial
Metabolic genes	Mostly bacterial

consequence of endosymbiosis

PROTIST

is any eukaryotic organism that is not an animal, plant, or fungus

first eukaryote was a unicellular protist and most eukaryotes are protists

structural and functional diversity, most are aquatic, most are unicellular

complex at the cellular level, though simple when compared to eukaryotes

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 7 of 15.

PROTIST (co	ont)
nutritional diversity:	<i>photoautotroph</i> = producers (photosynthetic) use energy from light (or inorganic chemicals) to convert CO2 to organic compounds
	<i>heterotroph</i> = consumers
	parasites =
	mixotroph =
photosynt- hetic protists	<i>main producers in aquatic community</i> biomass of photosynthetic protists is limited by the availability of nitrogen, phosphorus, or iron diatoms, dinoflagelletes, multicellular algae, others <i>blooms</i> dramatic increase in abundance
symbiotic protists	some are parasites that harm their hosts ex. photosynthetic dinoflagellets provide food for coral reefs ex. wood-digesting protists break down cellulose in the guts of termites
effect on human health	
	trypanosoma = excavate that causes sleeping sickness apicomplexans = alveolate parasites

ex. plasmodium - causes malaria

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

ORIGINS OF COMPLEX MULTICELLULARITY

multicellular	collections of connected cells, little to no different-
colonies	iation, can be simple or complex

Multicellular organisms with differentiated cells likely originated from multiple different ancestors

- 1. origin of cyanobacteria
- 2. origin of mitochondria
- **3.** origin of plastid (chloroplast)
- 4. origin of multicellular eukaryotes
- 5. origin of fungal-plant symbioses

EUKARYOTE SUPERGROUPS

Excavata (unicellular protists)

•diplomonads;parabasalids —

lack plastids, cannot do photosynthesis, reduced mitochondria, mostly anaerobic

▶euglenozoans—

most have 2 flagella, diverse, inclue predatory heterotrphs,

photoautotrophs, parasites

ex. trypanosoma - parasitic infection that causes sleeping sickness

SAR (Stramenopiles, Alveolates, Rhizarians)

includes most important photosynthetic organisms)

•diatoms — diverse photosynthetic unicellular algae can affect

brown algae (seaweed) — largest & most complex, multicellular, mostly marine

brown due to carotenoids in plastid

anchored by holdfast, stem-like stipe supporting leaflike blades

EUKARYOTE SUPERGROUPS (cont)

Archaeplastids

•	red algae — 2nd largest, mostly multicellular, can absorb green
8	& blue light
/	red due to phycoerythrin pigment

•green algae— very similar to land plants, some are unicellular

Schlorophytes — marine, terrestrial, mostly freshwater, multicellular, unicellular (free or symbiotic)

⇒charophytes — most closely related to land plants

▶ plants

chloroplasts of land plants *cyanobacteria* → *green algae* → *land plants*

EUKARYOTE SUPERGROUPS

Supergroup	Major Clades	Specific Example
Excavata	Diplomonads, parabasalids, euglenozoans	Euglena
SAR	Stramenopiles, alveolates, rhizarians	Plasmodium
Archaeplastida	Red algae, green algae, plants	Chlamydomonas
Unikonta	Amoebozoans, opisthokonts	Amoeba

DIVERSITIFICATION OF EUKARYOTES

eukaryotes	
	a) plants b) animals c) fungi, molds, mushrooms, yeast d) protists
early eukaryotes	date back <i>2.7 billion years ago</i> unicellular, with nucleus, membrane, cytoskeleton, varied size & shape
diverse eukaryotes	1.8 billion years ago novel biological features evolved: multicellularity, sexual life cycles, eukaryotic photosynthesis

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 8 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

DIVERSITIFICATION OF EUKARYOTES (cont)

large	635-541 million years ago (Ediacaran period) soft-b-
eukaryotes	odied organisms
	hard-bodied organisms 535-525 mya (Cambrian
	explosion)

ORIGIN OF MITOCHONDRIA & PLASTIDS plastid membrane-bound organelle (plants, algae, others) ex, chloroplast

	ex. chioropiasi	
endosy-	mitochondria and plastids were formerly small bacteria	
mbiont	that began living within larger cells	
theory		
key	•inner membranes are similar (transport proteins) to	
evidence	bacteria plasma membrane	
	•replication is similar to bacteria cell division	
	 have circular DNA like bacteria 	
	 transcribe/translate own DNA into proteins 	
	•ribosomes more similar to bacterial than eukaryotic	

mitochondria come from a single proteobacterium ancestor which

could do aerobic respiration using O2 to make ATP

plastids come from a single *cyanobacterium* ancestor that could do photsynthesis

ALL eukaryotes have mitochondria, not many have plastids

anaerobic host cells may have benefited from aerobic endosymbionts as oxygen increased in the atmosphere

EUKARYOTIC DIVERSITY (PHYLOGENETIC TREE)

(protists are yellow) \

THE GREENING OF EARTH

+4 billion years ago	Earth was created, lifeless for the first 2 billion years
1.2 billion years ago	cyanobacteria & protists
490	
+470 million years	plants colonized land
ago	
500 million years ago	plants, fungi, & animals moved to land
385 million years ago	first forests

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 9 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

PLANTS	
ancestors	red, green, & brown algae multicellular eukaryotes photsynthetic autotrophs cellulose cell walls chlorplasts (chlorophyll a & b) modernly only charophytes share most traits w plants
chloroplasts of land plants	cyanobacteria → green algae (charo- phytes) → land plants
moving to land	 □ evolution of: sporopollenin — protective polymer surrou- nding charophyte zygotes → dry land □ BENEFITs: unfiltered sunlight, plenty CO2, nutrient-rich soil □ CHALLENGES: scarcity of water, lack of support against gravity
key traits in plants not found in charophytes	 alternation of generations multicellular, dependent embryos walled spores produced in sporangia apical meristems

PLANTS (cont)

apical	— localized regions of cell division @ tips of roots &	
meristems	shoots, mitotic division = +mineral & nutrients	
derived	•cuticle — waxy coating, prevents water loss	
traits	•stomata — specialized pores, CO2-O2 exchange	
plants affect soil formation, roots stabilize soil and are nutrients when they decay,		
50% atmospheric O2		

HIGHLIGHTS OF PLANT EVOLUTION

PLANT CLASSIFICATION

vascular	vascular tissue for H2O/nutrient transport
plants	•xylem- conducts most H2O/minerals (tracheids have
	lignin = water-conducting cells, provide structural support)
	•phloem - tubes of cells, distribute sugars, amino acids,
	other org. prod
	▶lignin = polymer that makes plants rigid, allowing them to
	grow tall

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 10 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

PLANT CLASSIFICATION (cont)	
nonvascular plants	 bryophytes lack vascular tissue rhizoids - root-like anchor gametophytes = larger, live longer than sporophytes mature sporophyte fully depends on gametophyte for nutrition limited to moist habitats <i>liverworts</i> mosses <i>hornworts</i>
seedless vascular	 *early vascular plants * sporophytes = large/more complex gen. * gametophyte & sporophyte are independent *sperm swims through water to egg (like bryophytes) *lycophytes (club mosses) *monilophytes (ferns)
seed plants	 *reduced gametophytes, ovules, pollen > seed= embryo + food supply + protective coat •gymnosperms = naked seeds •angiosperms = enclosed seeds in ovaries (flowers & fruits)

ALTERNATIONS OF GENERATIONS

gametophyte generation is *haploid* and produces *haploid* gametes by mitosis

fusion of sperm+egg creates *diploid* **sphorophyte** and produces *haploid* spores by meiosis

MULTICELLULAR, DEPENDENT EMBRYOS

embryo within female gametophyte tissue, placental transfer cells \Rightarrow

nutrients

embryophytes ---embryo dependent on parent plant

WALLED SPORES PRODCUED IN SPORANGIS

sporangia— multicellular organs that produce spores *sporopollenin* (strong polymer) —in walls, resistant to harsh enviro-

nments

OVULATE CONE

protective layer(integument)

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 11 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

Cheatography

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 12 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

FUNGI	
oldest fossils	460 million years ago, terrestrial
heterot	rophs that feed by absorption
	ON secrete hydrolytic enzymes to break down ≪ molecules → small org. comp
chitin cell walls	
diversification	•mold (multicellular) •yeast (unicellular)
life cycles & reprod- uction	 most propagate by producing many spores, sexually or asexually
key role in land plant colonization	symbiotic interactions
fungi/other decomposers (fungi/bacteria) break down dead organisms and return
nu	trients to physical environment

FUNGAL ADAPTATIONS TO LAND

SYMBIOTIC INTERACTIONS

mutualism benefits BOTH	
	plant + fungi (<i>endophytes</i>) inside leaves/other •plant provide nutrition, some endophytes make toxins that deter herbivores/pathogens
parasitism	benefits one, harms other
	fungi absorb nutrients from host cells
lichen	 photosynthetic microorganism(algae/cyanobac- teria)-fungus •fungi benefit from carbs produced by algae/cyanob- acteria •microorganism is protected by fungal filaments, gather moisture/nutrients
lichens b	reak down surface & promote soil formation so plants can grow, on land 420 mya
mycorr- hizae	<i>plant-fungal</i> — fungal hyphae transfer nutrients (phosp- hate/others) to plant

earliest land plants lacked true roots/leaves

By nanana00

cheatography.com/nanana00/

Published 19th April, 2022. Last updated 20th April, 2022. Page 13 of 15.

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

Cheatography

THE RISE OF ANIMAL DIVERSITY

all animals (*metazoa*) share a common ancestor and likely evolve from multiple single-celled eukaryotes (*protist*)

EUKARYOTIC SUPERGROUPS

sponges and choanoflagellates' (protists) similarities = animals evolved from choanoflagellate-like ancestor over 700 millions years ago

By nanana00 cheatography.com/nanana00/ Published 19th April, 2022. Last updated 20th April, 2022. Page 14 of 15. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

DIVERSIFICATION OF ANIMALS

①all animals share a common ancestor
② sponges are sister group to ALL other animals
③ eumatozoa = animals with tissues
④ most animal phyla belong to Bilaterian clade

⑤ most animals are invertebrates

EARLY-DIVERGING ANIMAL GROUPS

sponges & cnidarians diverged from all other animals early on

sponges	•basal animals
(PORIFERA)	 lack true tissues
	•filter feeders: capture small particles in water
	water is drawn through pores into central cavity and
	flows out through an opening at the top

BIOLOGY--UNIT 4 Cheat Sheet by nananaoo via cheatography.com/145954/cs/31507/

ANIMALS WITH TISSUES		BODY CAVITIES	
eumetazoans include cnidarians and	<i>"true animals"</i> = tissues have symmetrical bodies (radial or bilateral)	most bilaterians posses a a body cavity (<i>coelom</i>)	 fluid/air filled space between digestive tract & outer body wall
all others •radial symmetry <i>cnidarians</i> (jellyfish, anemones)	- single, central axis most animals are sessile{nl}}≫2 embryonic tissue layers →endoderm →ectoderm		cushions organs, acts as hydrostatic skeleton, organs move independently o body wall
•bilateral symmetry	- 2 axes animals that move actively ≫3 germ layers →endoderm →ectoderm →mesoderm		
cnidarians	tissues + radial symmetry, blind digestive system, carnivores, lack brain/muscles, nerve net (simplest)		
chordata	bilaterians, vertebrates, complete digestive tract		
bilateral invert- ebrates	95% animals		

By nanana00 cheatography.com/nanana00/ Published 19th April, 2022. Last updated 20th April, 2022. Page 15 of 15.