\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{nadjjj\_06} \pdfinfo{ /Title (introduction-to-plant-development.pdf) /Creator (Cheatography) /Author (nadjjj\_06) /Subject (INTRODUCTION TO PLANT DEVELOPMENT Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{77DD77} \definecolor{LightBackground}{HTML}{F6FCF6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{INTRODUCTION TO PLANT DEVELOPMENT Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{nadjjj\_06} via \textcolor{DarkBackground}{\uline{cheatography.com/182191/cs/37892/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}nadjjj\_06 \\ \uline{cheatography.com/nadjjj-06} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th March, 2023.\\ Updated 25th March, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{INTRODUCTION TO PLANT DEVELOPMENT}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Development}} & is the progression from earlier to later stages in maturation. It is the process whereby tissues, organs, and whole plants are produced. \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} & involves: growth, morphogenesis (the acquisition of form and structure), and differentiation. \tn % Row Count 10 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Growth}} & refers to an irreversible increase in mass. \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} {\bf{Differentiation}} & The process in which the cells of the apical meristems mature to perform specific functions. \tn % Row Count 16 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Morphogenesis}} & is the acquisition of form, how a plant or organ acquires its distinctive shape or form. \tn % Row Count 20 (+ 4) % Row 5 \SetRowColor{white} {\bf{Plasticity}} & is the ability to change form or shape in response to a change in environment; no genetic change is involved. \tn % Row Count 25 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Plant development is highly plastic} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{1.748 cm} x{2.964 cm} x{2.888 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Types of growth in Plants}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Indeterminate growth}} & Plant organ grow continuously & Plant organ grow continuously Ex. Root and stem \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Determinate growth}} & Organs stop growing after reaching a certain size. & Ex. Leaves, flowers and fruits \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TYPES OF PLANT GROWTH}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Primary growth}} & is an increase in stem and root length \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Secondary growth}} & is an increase in the girth of plant. \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Structural and functional unit}} \tn % Row 0 \SetRowColor{LightBackground} cell & basic structural and functional unit of plants \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{basic structural and functional unit of plants} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} Plant tissue systems fall into one of two general types: & meristematic tissue \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} & permanent (or non-meristematic) tissue \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{MERISTEMS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Meristems}} & plant regions of continuous cell division and growth \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{meristematic tissue}} & is a group of identical cells that are in a continuous state of division \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{initials}} & Cells that remain as sources of new cell. \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} {\bf{derivatives}} & The new cells displaced from the meristem. \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Types of Meristematic Tissues}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{apical meristem}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{intercalary meristem}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{intercalary meristem}}} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Apical meristem}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Apical meristem}} & A small mitotically active zone of cells found at the shoot tip or root tip \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Primary growth occurs as a result of the activity of apical meristem} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{primary tissues}} & Tissues derived from the apical meristems are \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} Form primary meristems that produce the tissues of the stem and root & {\bf{a. Protoderm (which forms the epidermis)}} \tn % Row Count 13 (+ 4) % Row 4 \SetRowColor{LightBackground} & {\bf{b. Procambium (which forms phloem and xylem)}} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} & {\bf{c. Ground meristems (which form parenchyma)}} \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Lateral Meristem}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{are known as secondary meristems because they are responsible for secondary growth, or increase in stem girth and thickness} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Give increase in girth (secondary growth)} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Produces secondary vascular tissues} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Two lateral meristems: {\bf{the vascular cambium and the cork cambium}} are responsible for secondary growth} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Vascular Cambium}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{sometimes known just as cambium) is a cylinder of cells that forms new phloem and xylem.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Division of the cells of the vascular cambium adds more cells to the wood(secondary xylem) and inner bark (secondary phloem).} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{You can find out the age of a tree by counting the number of dark rings} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Cork Cambium}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{the outermost lateral meristem.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{It produces {\bf{cork cells}}, which contain a waxy substance that can repel water.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The phloem together with the cork cells form the {\bf{bark}}.} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The cork cambium also produces a layer of cells known as {\bf{phelloderm}}} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{The cork cambium, cork cells, and phelloderm are collectively termed the periderm.} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Intercalary meristem}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Regions of meristematic tissue between regions of more mature tissues} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Occur only in monocots, at the bases of leaf blades and at nodes (the areas where leaves attach to a stem).} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PERMANENT TISSUES}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Permanent tissue }} & consists of plant cells that are no longer actively dividing \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} Three main types: & {\bf{Dermal}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} & {\bf{Vascular}} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} & {\bf{ground}} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Plant Reproduction and Embryogenesis}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Alternation of generation}} & All land plants (and {\emph{some}} green algae) reproduce via the alternation of generations life cycle, where both the haploid and the diploid stage are multicellular. \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} {\bf{Sporophyte (Diploid stage)}} & produces spores \tn % Row Count 10 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Gametophyte (Haploid) stage)}} & formed from the spore and give rise to the haploid gametes \tn % Row Count 13 (+ 3) % Row 3 \SetRowColor{white} {\bf{Haploid (n)}} & the quality of a cell or organism having a single set of chromosomes \tn % Row Count 17 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Diploid (2n)}} & a cell or organism that has paired chromosomes \tn % Row Count 20 (+ 3) % Row 5 \SetRowColor{white} {\bf{Gamete}} & a mature haploid male or female germ cell that is able to unite with another of the opposite sex in sexual reproduction to form a zygote \tn % Row Count 27 (+ 7) % Row 6 \SetRowColor{LightBackground} {\bf{Spore}} & a minute, typically one-celled, reproductive unit capable of giving rise to a new individual without sexual fusion \tn % Row Count 33 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Flower}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The reproductive structure found in flowering plants which is specialized for sexual reproduction} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Pollination and Reproduction} \tn % Row Count 3 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANT GAMETOGENESIS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Male Gametophyte (The Pollen Grain)}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{Pollen }} & is the male gametophyte in angiosperms and gymnosperms. \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{microsporangium (micro = small)}} & this is where ollen development occurs, located within the anthers. \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} {\bf{microsporangia (P of microsporangium) }} & are pollen sacs in which the microspores develop into pollen grains. \tn % Row Count 12 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.84 cm} x{4.16 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Female Gametophyte (The Embryo Sac)}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Embryo sac / female gametophyte }} & is an oval structure present in the ovule of flowering plants. \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & It possesses two haploid nuclei and six haploid cells which do not have cell walls. \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{How does pollination and fertilization occur?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{POLLINATION}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The transfer of pollen from a male part of a plant to a female part of a plant, later enabling fertilization} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \seqsplit{Self-pollination} & is pollination of a carpel by pollen from the same flower or another flower on the same plant \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \seqsplit{Cross-pollination} & is the pollination of a carpel by pollen from a different individual \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Methods of Pollination}}} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} Biotic Pollination & ◻ involves pollinators (also called pollen vectors) \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} Abiotic Pollination & ◻ wind, water and rain \tn % Row Count 16 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Double Fertilization}}} \tn % Row Count 17 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Double fertilization involves two sperm cells; one fertilizes the egg cell to form the zygote, while the other fuses with the two polar nuclei that form the endosperm.} \tn % Row Count 21 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Embryogenesis}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Embryogenesis}} & is the first stage of the development of a new organism from its first cell named zygote, which appears as a result of the sexual fertilization. \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.28 cm} x{4.72 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Seed development}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{After double fertilization}}.} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} & each mature ovule develops into a seed \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} & the ovary develops into a fruit enclosing the seed(s) \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} {\bf{Seeds}} & are protective structures that contain plant embryos and nutritive tissue to support the embryo until it can survive on its own \tn % Row Count 12 (+ 6) % Row 4 \SetRowColor{LightBackground} {\bf{A typical seed contains:}} & a. Seed coat \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} & b. Endosperm/cotyledon \tn % Row Count 15 (+ 1) % Row 6 \SetRowColor{LightBackground} & c. single embryo \tn % Row Count 16 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PARTS OF A SEED WITH FUNCTION}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{1. Seed coat}} & They are the protective outer covering of a seed. The seed coat is formed from the outer covering of the ovule called the integument. \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} {\bf{It usually contains two layers:}} & {\bf{ testa}} – the thick outer layer \tn % Row Count 9 (+ 2) % Row 2 \SetRowColor{LightBackground} & {\bf{tegmen}} – the delicate inner layer. \tn % Row Count 12 (+ 3) % Row 3 \SetRowColor{white} {\bf{FUNCTIONS:}} & Protecting the seed from physical and mechanical damage \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} & Preventing the seed from germination even under favorable conditions of growth (seed dormancy) \tn % Row Count 20 (+ 5) % Row 5 \SetRowColor{white} & Preventing the excessive loss of water from the seeds \tn % Row Count 23 (+ 3) % Row 6 \SetRowColor{LightBackground} & Acting as a physical barrier against the entry of parasites \tn % Row Count 26 (+ 3) % Row 7 \SetRowColor{white} {\bf{2. Endosperm}} & It is a tissue that is rich in oil, starch, and protein. \tn % Row Count 29 (+ 3) % Row 8 \SetRowColor{LightBackground} {\bf{Non-endospermic or exalbuminous seeds}} & Characterized by the complete absence of the endosperm, such as the seeds of the pea plant, groundnut, and gram. \tn % Row Count 35 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PARTS OF A SEED WITH FUNCTION (cont)}} \tn % Row 9 \SetRowColor{LightBackground} {\bf{Endospermic or albuminous seeds}} & Characterized by the presence of the endosperm, such as the seeds of millets, palms, and lilies. \tn % Row Count 5 (+ 5) % Row 10 \SetRowColor{white} {\bf{Functions:}} & -Storing of reserve foods that provide nourishment to the developing plant \tn % Row Count 9 (+ 4) % Row 11 \SetRowColor{LightBackground} & -Protecting the embryo, the next part of the seed, by acting as the mechanical barrier \tn % Row Count 14 (+ 5) % Row 12 \SetRowColor{white} {\bf{3. Embryo}} & the young plant that is developing inside the seed coat. \tn % Row Count 17 (+ 3) % Row 13 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{contains the underdeveloped tissues of leaves, stem, and roots of a plant.} \tn % Row Count 19 (+ 2) % Row 14 \SetRowColor{white} {\bf{Epicotyl}} & The tiny shoot of an embryo, from which the entire shoot system develops. The tip of the epicotyl is called plumule. \tn % Row Count 25 (+ 6) % Row 15 \SetRowColor{LightBackground} {\bf{Hypocotyl}} & The stage of transition for the growing shoot and root of the embryo \tn % Row Count 29 (+ 4) % Row 16 \SetRowColor{white} {\bf{Radicle}} & The tiny root of the embryo \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PARTS OF A SEED WITH FUNCTION (cont)}} \tn % Row 17 \SetRowColor{LightBackground} {\bf{Cotyledons}} & They are the leaves of the embryo that provide nourishment to the developing plant. \tn % Row Count 5 (+ 5) % Row 18 \SetRowColor{white} {\bf{Functions}} & Giving rise to a new complete new plant \tn % Row Count 7 (+ 2) % Row 19 \SetRowColor{LightBackground} & Storing food and nourishing the baby plant \tn % Row Count 10 (+ 3) % Row 20 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{two types of cotyledons}}} \tn % Row Count 11 (+ 1) % Row 21 \SetRowColor{LightBackground} {\bf{monocotyledonous or monocots}} & embryo with one cotyledon and \tn % Row Count 13 (+ 2) % Row 22 \SetRowColor{white} {\bf{dicotyledonous or dicots}} & – embryo with two cotyledons. \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2 cm} x{6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{MONOCOTS}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{scutellum}} & The single cotyledon \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & is connected directly to the embryo via vascular tissue (xylem and phloem). \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Food reserves are stored in the large endosperm}}} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{dicots}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The two cotyledons in the dicot seed also have vascular connections to the embryo.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{In endospermic dicots}} & the food reserves are stored in the endosperm. \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{non-endospermic dicots}} & The triploid endosperm develops normally following double fertilization, but the endosperm food reserves are quickly remobilized and moved into the developing cotyledon for storage \tn % Row Count 12 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.16 cm} x{5.84 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Seed Germination}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{dormancy}} & mature seeds enter a period of inactivity, or extremely low metabolic activity: \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Germination}} & is the development of a plant from a seed after a period of dormancy. \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} & Germination depends on imbibition, the uptake of water due to the low water potential of the dry seed \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2 cm} x{6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{FRUITS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Any structure that develops from a fertilized ovary and contains seeds of the plant.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The ovary surrounding the ovules develops into a fruit that contains one or more seeds.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Vegetable}} & is actually not a scientific term and simply refers to the edible part of the plant: roots/tubers, stems, leaves, etc. \tn % Row Count 9 (+ 5) % Row 3 \SetRowColor{white} {\bf{fruit}} & is the seed-containing part of a plant \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} & is the fleshy or dry ripened ovary of a plant. \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{FRUIT DEVELOPMENT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{While the seeds are developing from ovules, the ovary of the flower is developing into a fruit, which protects the enclosed seeds and, when mature, aids in their dispersal by wind or animals.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Fertilization triggers hormonal changes that cause the ovary to begin its transformation into a fruit. If a flower has not been pollinated, fruit typically does not develop, and the entire flower usually withers and falls away} \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Parts of a fruit}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{the ovary wall becomes the pericarp, the thickened wall of the fruit.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Exocarp}} & the outer layer \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{Mesocarp}} & middle layer \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} {\bf{Endocarp}} & inner layer \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.964 cm} x{3.04 cm} x{1.596 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{THE PLANT BODY}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{The shoot system consists of two portions:}} & the vegetative \seqsplit{(non-reproductive)} parts of the plant, & leaves and the stems, \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & the reproductive parts of the plant, & flowers and fruits. \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{The root system}} & which supports the plants and absorbs water and miis usually underground. & \tn % Row Count 12 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{TYPES OF PLANT BODY}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{primary plant body}} & derived from shoot and root apical meristem \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & composed of primary tissues \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & constitutes the herbaceous parts of a plant \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} {\bf{secondary plant body}} & derived from meristems other than apical meristem \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} & composed of secondary tissues \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}