\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{nadjjj\_06} \pdfinfo{ /Title (differentiation-and-morphogenesis.pdf) /Creator (Cheatography) /Author (nadjjj\_06) /Subject (DIFFERENTIATION AND MORPHOGENESIS Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{77DD77} \definecolor{LightBackground}{HTML}{F6FCF6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{DIFFERENTIATION AND MORPHOGENESIS Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{nadjjj\_06} via \textcolor{DarkBackground}{\uline{cheatography.com/182191/cs/37898/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}nadjjj\_06 \\ \uline{cheatography.com/nadjjj-06} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 25th March, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{THE PLANE AND SYMMETRY OF CELL DIVISION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The plane (direction) and symmetry of cell division are immensely important in determining plant form.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Asymmetrical cell division, in which one daughter cell receives more cytoplasm than the other during mitosis, is fairly common in plant cells and usually signals a key event in development} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANT DEVELOPMENT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{PLANT DEVELOPMENT INVOLVES COMMITMENTS} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Commitment & the process whereby a cell becomes firmly committed to just one of the several developmental pathways that are open to it before expressing the phenotype of the differentiated cell type. \tn % Row Count 10 (+ 9) % Row 2 \SetRowColor{LightBackground} Commitment" or "determination" & is a general term that includes setting up of polarities and pattern formation \tn % Row Count 14 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Inherent in the concept of polarity is the presence of poles, typically two, with an axis running between them, thus apical-basal polarity, or in and out (radial) polarity} \tn % Row Count 18 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 18 (+ 0) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Commitment occurs in steps, and choices at each step are limited to a few options}}} \tn % Row Count 20 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Plant development is hierarchical and involves a series of progressive commitments.} \tn % Row Count 22 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Commitment during Embryogenesis}}} \tn % Row Count 23 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Illustrated by the first division of the zygote setting out the apical and basal cells, which give rise to the embryo proper and suspensor, respectively} \tn % Row Count 27 (+ 4) % Row 9 \SetRowColor{white} Suspensor & – structure that connects endosperm to an embryo. It pushes the embryo towards the endosperm in order to draw its nutrition. \tn % Row Count 33 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PLANT DEVELOPMENT (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{At the tissue level, the protoderm is separated from the central cells, followed by the separation of the central cells into ground meristem and procambium, and later, in roots, separation of the ground meristem into cortex and endodermis and of procambium into pericycle and vascular tissues.} \tn % Row Count 6 (+ 6) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Protoderm cells normally will form epidermis, epidermal hairs, guard cells, and elaborate cuticle, but will not form xylem or phloem cells} \tn % Row Count 9 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{In contrast, procambial cells will normally form vascular tissues, pericycle, and vascular cambium and will not suddenly form glandular epidermal hairs or elaborate cutin.} \tn % Row Count 13 (+ 4) % Row 13 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Vascular cambium, when established, is committed to giving rise to derivatives by specific planes of cell division, and the derivatives in turn are committed to forming xylem or phloem cells.} \tn % Row Count 17 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{GENE ACTIVITY}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Gene activity involves at least three types of genes:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} a. Housekeeping genes & that encode proteins required for general housekeeping, such as enzymes involved in respiration, sugar uptake, or synthesis of proteins or synthesis/replication of nucleotides and polynucleotides \tn % Row Count 10 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{b. Genes that are expressed in a cell- and tissue specific manner and which encode proteins that are specific for the channelized route or the designated function.} \tn % Row Count 14 (+ 4) % Row 3 \SetRowColor{white} c. Regulatory genes & that specify pattern or that regulate the expression of cell/tissue specificity \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Mechanism of Differentiation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The functions are performed efficiently and to the benefit of the whole organism, but at the price that the specialized cells, tissues, and organs have only limited parts of their genome open for transcription.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{◼ Typical leaf mesophyll cell, which is specialized for photosynthesis, may have 40-50 well differentiated chloroplasts.} \tn % Row Count 8 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{In contrast, a root parenchyma cell storing starch, will have no chloroplasts, no chlorophyll and associated proteins, and no RUBISCO. Instead, it would have amyloplasts (starch-storing plastids) and large amounts of ADP glucose pyrophosphorylase} \tn % Row Count 13 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The root and mesophyll cells have the same genomic DNA, but they are specialized for different functions because different genes are expressed in the two types of cells.} \tn % Row Count 17 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Differential gene expression is used in a broad sense to include all gene-directed activity, not only gene transcription, but also posttranscriptional and posttranslational modifications, as well as gene silencing.} \tn % Row Count 22 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Differential gene activity is the basis for the phenomenon known as epigenesis, the unfolding of the developmental program of an organism} \tn % Row Count 25 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{CELL DIFFERENTIATION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{a process where cells become biochemically and structurally specialized to carry out specific functions} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{◼occurs through cell determination, a series of molecular events in which activities of certain genes are altered in ways that cause a cell to progressively commit to a particular differentiation pathway} \tn % Row Count 8 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ORIENTATION OF CELL EXPANSION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{he orientation of the cellulose microfibrils affects the direction of cell expansion} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.32 cm} x{5.68 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{PREPROPHASE BAND}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Preprophase} band & the microtubules in the cytoplasm which becomes concentrated into a ring. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & disappears predicts the future plane of cell division. \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{THE PLANE AND SYMMETRY OF CELL DIVISION}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The plane (direction) and symmetry of cell division are immensely important in determining plant form.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Asymmetrical cell division, in which one daughter cell receives more cytoplasm than the other during mitosis, is fairly common in plant cells and usually signals a key event in development} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Arabidopsis thaliana}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{A weed of the mustard family (Brassicaceae Family)} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Plant model system for genetic studies} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The first plant to have its entire genome sequenced} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Arabidopsis has about 26,700 protein-encoding genes} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Shoot vs Leaf Determination}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Shoot vs Leaf Determination} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Young leaves can be excised from the shoot apex and placed in a culture medium, and they develop and form a complete leaf.} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{In many ferns, leaf development occurs over a long period} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{n one experiment, primordia P1 through P10 were excised and cultured.} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Results clearly showed that younger primordia were undetermined and produced shoots, both stem and leaves, whereas older primordia were progressively more committed (or determined) to produce leaves only} \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Shoot Meristem Identity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Plant homeobox genes are required for cell fate determination, as well as pattern definition and specification of organ/tissue boundaries.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} KNOX (for knotted-like homeobox) & family of genes, named after the maize KNOTTEDl (KNl) gene \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} & is further divided into two classes, I and II. Class I KNOX genes \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} & are expressed in shoot meristems and are downregulated in primordia of lateral organs. \tn % Row Count 13 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{For instance, the KNl gene in maize and its ortholog STM gene in Arabidopsis are first expressed in the globular-heart stage embryo in cells of the presumptive shoot apex, but not in cotyledons (scutellum in maize).} \tn % Row Count 18 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Subsequently, they are expressed in both vegetative and floral shoot meristems of the adult plant, but are not expressed in cells on the periphery, which are the founder cells of lateral organs, such as leaves or petals.} \tn % Row Count 23 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Floral Meristem and Organ Identity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Floral meristems express other regulatory genes that distinguish them from vegetative shoot meristems} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{In dicots, many of these genes belong to the MADS-box gene family.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{LEAFY \{LEY), a non-MADS-box gene, and APETALAl \{API), a MADS-box gene, in Arabidopsis encode transcription factors that act as primary determinants of floral meristem identity.} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{API also specifies an organ, the sepals whorl in Arabidopsis flower.} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Loss-of-function mutations in these genes (e.g., Ify, apl) lead to a partial conversion of presumptive floral sites into shoots.} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{EXTERNAL OR INTERNAL PERTURBATIONS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{EXTERNAL OR INTERNAL PERTURBATIONS MAY CAUSE A REVERSAL OF ESTABLISHED COMMITMENTS} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The extent of reversal, whether partial, i.e., going back a few steps, or complete, going back to the zygotic stage, seems to be a function of the extent of perturbation. Two terms, dedifferentiation and redifferentiation, are used to denote a reversal of established patterns and differentiation along new lines.} \tn % Row Count 9 (+ 7) % Row 2 \SetRowColor{LightBackground} \seqsplit{Dedifferentiation} - & means a programmed change in the metabolic machinery of a cell, shutting down of genes that were being transcribed in connection with the established function of the cell, and adjustment to new conditions. \tn % Row Count 17 (+ 8) % Row 3 \SetRowColor{white} \seqsplit{Redifferentiation} & Induction of new sets of genes and their transcription \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{MORPHOGENESIS}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{morphogenesis} & The development of form, in which differentiated cells in specific locations become spatially organized into recognizable structures \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} pattern formation & The development of specific structures in specific locations \tn % Row Count 8 (+ 3) % Row 2 \SetRowColor{LightBackground} & a series of steps requiring signalling between cells, changes in the shapes and metabolism of certain cells and precise cell interactions \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Many developmental biologists postulate that pattern formation is \newline determined by positional information in the form of signals that \newline continuously indicate to each cell its location within a developing \newline structure. According to this hypothesis, each cell within a \newline developing organ responds to positional information from \newline neighboring cells by differentiating into a particular cell type, \newline oriented in a particular way} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{POLARITY IN SHOOT AND ROOT CUTTINGS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Plants typically have an axis, with a root end and a shoot end.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Adventitious roots form within the root end of a stem cutting, and adventitious shoots arise from the shoot end of a root cutting.} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Morphogenesis in plants is often under the control of homeotic genes, master regulatory genes that mediate many of the major events in an individual's development.} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{Over expression of KNOTTED-J gene in tomato plants results in leaves that are "supercompound" (right) compared with normal leaves} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{◼The morphological changes that arise from these transitions in shoot apical meristem activity are called phase changes} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{GENETIC CONTROL OF FLOWER DEVELOPMENT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Flower formation involves a phase change from vegetative growth to reproductive growth.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{When plants recognize an opportunity to flower, signals are transmitted through florigen.} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The first genetic change involves the switch from the vegetative to the floral state.} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{The second genetic event follows the commitment of the plant to form flowers.} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{p{0.8 cm} p{0.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{ABC MODEL OF FLOWER DEVELOPMENT}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{In the simple ABC model of floral development, three gene activities (termed A, B, and C-functions) interact to determine the developmental identities of the organ primordia within the floral meristem} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{A mutation in a plant organ identity gene can cause abnormal floral development} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}