Cheatography

data mining Cheat Sheet by mvyjayanti via cheatography.com/72036/cs/18263/

Naive Bayes and LogReg		ANNs (cont)			SVM		Errors		
P(A C) = (P(C A)P(A))/P(C)	predicts T/F, "S" shaped, from 0-1	\hat{y} =sign(w ₁ x ₁ +w ₂ x ₂ +wr t=sign(w •x) λ =learning rate xij=val of jth attribute of		 for weight update: wj(k+1) = weight param associated w/ ith input link after kth iteration 	update: wj(k+1) = weight param associated w/ i th input	frontier that best segregates 2 classes by margins	polynomial kernel: k(x,y)= (x*y+1) ^d	P(+) = 1/(1+ e ⁻ (w0+w1x1))	error= misclassificatio n
posterior = (likelihood x prior)/normalizing constant	log(odds) = log(p/(1-	training example xi				RBF kernel:k(x,y)= e∽(x-y ²	tune by k-fold cross-val (k=5)	For new cases, predict:	1 if (w0+w1x1+)- >=1, 0 else
pros: easy/fast, assuming	p)) z = estimated				adv: high dimension spaces, #of dimensions > #of	diff kernel functions for diff decisions	if w0 inc as x inc, p(+) inc	error = (FP+FN)/All	
independence, categorical	intercept/st d error	$wj(k+1)=wj(k)+\lambda(y1-\hat{y}ik^{n})$	kij error = y - ŷ		samples k1+k2 = even more	dis: if	sensitivity = TP/(TP+FN)	specificity = TN/(TN+FP)	
<pre>cons: if not in set - > 0% can use Laplace estimation (add 1), bad estimator, independent predictor assumption -> unlikely LR: p = elog(odds))/(1+elo- g(odds)) log(L) =sum i to n(log </pre>	y = log(F)B1 + log(T/F)B2	if error = 2, inc w of +ves Error E = ΣEk k∈outputs		if error = - 2, in w of - ves	complex	#features > #samples, CV	predicted val = TP/(TP+FP)	-ve predicted val = TN/(TN+FN)	
				Ek = ξ : how far	min(w ²) for linear ξ: how far pt _i is from correct side	, , , , , , , , , , , , , , , , , , ,			
		output oi = $1/(1+e^{-net i})$	utput oi = 1/(1+e ^{-net i}) net i = Σwij*oi		$min(w +C(\Sigma i=1 \rightarrow n\xi_i)$		apparent error: error on example used		
		Inductive Bias, No Free Lunch			1/2(λ _i λ _j y _i y _j x _i x _j)	,	to train model (underestimate s TE)		
	likelihood = mul. all T x all (1- F) g(Tn) +	IB: anything part of langu			dist btw parallel $ w =$ planes = z/ w sqrt(w1+w2)				
		hypothesis choice meth	essible, hod of osing	generalization error<= p(bar)(1-s ²)/s ²	p(bar) = avg correlation, s=strength	n: ability to predict unseen cases	Occam's Razor: should not be multiplied beyond necessity		
sum(log(Fn)) R ² =(SS(mean) - SS(fit))/SS(mean)		algorithms A&B, unifo						uming prm /) →#of	
ANNs		dataset for which A outperforms B	data	sets for h A>B = #			Overfitting: memorizing	test error: error on ex. held out	
neuron = things that hold number from 0 to 1	boolean: T=1, F=0		B>A				training set	of training	
$\hat{y} = 1$ if $w_1x_1+w_2x_2+wnxn-t$ t(bias factor) >0	, -1 if <0						select k: sqrt(if n is even, choose odd	n), Ri = {x:d(x,xi)< d(x,x2), i!=j}	
							euclidean dis =sqrt((x-x1) ² -		

By **mvyjayanti**

cheatography.com/mvyjayanti/

Not published yet. Last updated 13th December, 2018. Page 1 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

data mining Cheat Sheet by mvyjayanti via cheatography.com/72036/cs/18263/

1/3, one is dation set h variance on mate) n on N-1, test 1 (good mate) de set into k rs, LOO each, eat N times.	eanNB Better: stratify same % of pos Decision Tree asks a	2-tailed t. t alpha/2. ((meanVar)x(sqrt(n))) / S each fold to contain sitives and negatives	ROC: sensitivity vs. (1-specificity), higher val the better, flatter line the worse	sens: TP rate, 1-spec: FP rate	incorrect pts weighed by # that is inversely proportional to training error	w inc if misclassifie d, dec else classifiers combined
n on N-1, test 1 (good mate) de set into k s, LOO each, eat N times.	Decision Tree asks a	<u> </u>				
de set into k s, LOO each, eat N times.			Lift curves: find	find % of each	Arcing(Adaptive resample&combine): like boosting but change w by update	by weighting- accuracy of
npute mean	question: classifies based on T/F	root, internal(arrows to and from), external(arrows to) (leaves)	% of each total response from sum of all y = +ve % / % o total	+ve responses from total +ve responses f x = % of total		training set eg. Arc x4: w(x) = $1+e(x)^4$ e(x)=times x
each break into categories		T/F and Y/N for each Gl ² = 1-(Y F/(Y F +	k-means clustering		method	has been misclassifie d so far
points (can repeat), train, test on S - S1	P(Y T), P(N T), P(Y F),	$V T),$ $N F))^{2}+(N F/(Y F + V F),$ $N F))^{2}$	user choose k, center in initialize k centers, dense loop: assign pts regions or	depends on: strength(perf of individuals), diversity	bagging error: from	
t=(meanNB- meanLR)/S (S:pooled variance), reject H0 if t>t alpha	P(N F) Gl ¹ =	$1-(Y T/(Y T + N T))^2+(N T/(Y T + N T))^2$	nearest those centers, move centroid of assig pts	random, optimizing gned (total distance) ²	(uncorrelated errors)	reducing var boosting can reduce bias&var bagging is >
	$\label{eq:Glall} \begin{split} & \text{Glall}{=}(\text{T}/(\text{T}{+}\text{F}) \times \text{Gl}^1){+}(\text{F}/(\text{T}{+}\text{F}) \times \text{Gl}^2) \end{split}$		returns local sol	ution		base classifier
neanLR!=me alpha/2.		, ,	Ensembles boosting better or overfit noisy Bagging: Boosting: changing weights on pts and aggregating building series of elassifiere, start w=1			Random forests: for tree,choose pts,for node, features
	w1 = T instances/all w1 = T	w2 = F instances/all w2 = F				subset w/ best IG,split, end,recurse, end
na/2 ean	2. Var)x(sqrt(4 t. t 2. Var)x(sqrt(Var)x(sqrt(Var)x(sqrt(P(n)log(P(n))) w1 = T instances/all w1 = T	A t. tentropy:find H(Strue) andH(S)=P(y)loH(S)=P(y)log2(P(y))-w1H(Strue)-P(n)log(P(n)w2H(Sfalse))w1 = Tw2 = Finstances/allinstances/allw1 = Tw2 = F	A t. t entropy:find $H(S^{true})$ and $H(S)=P(y)lo$ EnsemblesWar)x(sqrt() $H(S)=P(y)lo$ $H(S^{false}), H(S)-$ $g2(P(y)) W1H(S^{true})-$ $W2H(S^{false})$ $W2H(S^{false})$ Bagging: bootstrap aggregatingE bootstrap bo cW1 = T $W2 = F$ instances/all $W1 = T$ $W2 = F$	In t. t entropy:find $H(Strue)$ and $H(S)=P(y)lo$ Ensembles $Var)x(sqrt()$ $H(S)=P(y)lo$ $H(Sfalse)$, $H(S)-$ $g2(P(y)) w1H(Strue)-$ $w2H(Sfalse)$ $w2H(Sfalse)$ Bagging: bootstrap aggregatingBoosting: changing weights on pts and building series of classifiers, start w=1 $w1 = T$ $w2 = F$ instances/all $w1 = T$ $w2 = F$	$\frac{1}{2} \frac{1}{2} \frac{1}$

By mvyjayanti

cheatography.com/mvyjayanti/

Not published yet. Last updated 13th December, 2018. Page 2 of 3.

largest info gain, least GI

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!

http://crosswordcheats.com

Cheatography

data mining Cheat Sheet

by mvyjayanti via cheatography.com/72036/cs/18263/

	feature selection			Bias and Var (co		
	removing irrelevant info for a better, faster model	drop m encode	issing values or e them	error: MSE = $(\hat{y}-\mu)^2$ var: E $(\hat{y}E(\hat{y}))^2$ bias: $(E(\hat{y}-\mu)^2)^2$	^bes giver para	
	drop: if all values	, , , , , , , , , , , , , , , , , , , ,		µ) ² +noise KNN,ANN,E	DT: lov	
	are the same			var: how much do		
	if lowforward, backward,correlatiostepwise selection:n withbest model with f1,target then keep going untiltreesvalidation error stopswith leastdropping		systematic error			
			on error stops	EM Expecta	ation	
	info gain			hard clustering: each pt only belongs to one cluster		
	beam or heuristic search	for computation interpretability genetic algorithms				
	1) filters: all above + other correlatio n	2) wrappers: build a classifier with a subset+eval on validation data. but 2 ^d possible subsets		EM: automatical discover all params for "sources"→	k	
	Bias and Var			we may not know source		
	PCA : dimensionality reduction		linear combo of OG features	if we know can find likeliness	μ,σ,	
	max. variance: smallest # until 90% var explained			$\frac{1/\text{sqrt}(2\pi\sigma^2)}{p(-(x_i - \mu_\beta)^2/2\sigma_\beta^2)}$ $a_i=1-b_i=P(a_i)$,	

	Bias and Var (c	EM Ex		
	MSE = (ŷ- give	st estimate of y en x and fixed ams Ə	clust. ($\sigma_{\beta}^2 = (b_1 + b_2)^2 + + (b_1 + b_2)^2$ em: pla random	
	μ) ² +noise KNN,ANN,DT: lo var: how much d	-	each ph does it came fr	
	var across datas systematic error to fit EM Expectation clust.	prediction, inability	lterate convers P(a) =	
	hard clustering: each pt only belongs to one cluster	soft clustering: can belong to more than one cluster by %	"What peach di	
	EM: automatically discover all params for k "sources" \rightarrow but we may not know source if we know μ , σ , can find likeliness	mixture models: probabilistic way of soft clustering v each cluster Gaussian or multinominal		
)	$\begin{array}{l} 1/sqrt(2\pi\sigma^{2})^{*}ex\\ p(-(x_{i} - \\ \mu_{\beta})^{2}/2\sigma_{\beta}^{2})\\ a_{i} = 1 - b_{i} = P(a_{i}) \end{array}$	Bayesian posterior: $b_i =$ $P(b x_i) =$ $(P(x_i b)P(b)) /$ $(P(x_i b)P(b) +$ $P(x_i a)P(a))$		

EM Expectation M clust. (cont)	ation Maximization t)		
$\sigma_{\beta}^{2}=(b_{1}(x_{1}-\mu_{\beta})^{2}+)/(b_{1}+b_{2}+)$	$\mu_{\beta} = (b_1 x_1 + b_2 x_2 +) / (b_1 + b_2 +)$		
em: places randomly,for each pt P(b x _i): does it look like it came from b	Working to adjust (μ_{a} , σ_{a}^{2}) and (μ_{β} , σ_{β}^{2}) to fit points assigned		
Iterate until convergence P(a) = 1- P(b)	Could also estimate priors: P(b) = (b1+b2+)/n		
"What proportion of each distribution d			

By mvyjayanti

cheatography.com/mvyjayanti/

Not published yet. Last updated 13th December, 2018. Page 3 of 3. Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com