# Cheatography

### data mining Cheat Sheet by mvyjayanti via cheatography.com/72036/cs/18263/

| Naive Bayes and LogReg                                                                                                |                                             | ANNs (cont)                                                                                                                                                                 |              |                                                                    | SVM                                                                                                                               |                                                                                                                                                                                | Errors                                           |                                                               |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| P(A C) =<br>(P(C A)P(A))/P(C)                                                                                         | predicts<br>T/F, "S"<br>shaped,<br>from 0-1 | $\hat{y}$ =sign(w <sub>1</sub> x <sub>1</sub> +w <sub>2</sub> x <sub>2</sub> +w<br>t=sign( <b>w</b> • <b>x</b> )<br>$\lambda$ =learning rate<br>xij=val of jth attribute of |              | for weight<br>update:<br>wj <sup>(k+1)</sup> =<br>weight           | frontier that best<br>segregates 2 classes<br>by margins                                                                          | polynomial<br>kernel:<br>k(x,y)=<br>(x*y+1) <sup>d</sup>                                                                                                                       | P(+) = 1/(1+<br>e <sup>-</sup><br>(w0+w1x1)<br>) | error=<br>misclassificatio<br>n                               |
| posterior =<br>(likelihood x<br>prior)/normalizing                                                                    | log(odds)<br>=<br>log(p/(1-                 | training example xi<br>wj <sup>(k+1)</sup> =wj <sup>(k)+λ(y1-ŷi</sup> k^)xij                                                                                                |              | param<br>associated<br>w/ i <sup>th</sup> input<br>link after      | RBF kernel: $k(x,y) = e^{-\gamma(  x-y  ^2)}$                                                                                     | tune by k-fold<br>cross-val<br>(k=5)                                                                                                                                           | For new<br>cases,<br>predict:                    | 1 if<br>(w0+w1x1+)-<br>>=1, 0 else                            |
| constant<br>pros: easy/fast,<br>assuming                                                                              | p))<br>z =<br>estimated                     |                                                                                                                                                                             |              | k <sup>th</sup><br>iteration                                       | adv: high dimension<br>spaces, #of<br>dimensions > #of                                                                            | diff kernel<br>functions for<br>diff decisions                                                                                                                                 | if w0 inc as<br>x inc, p(+)<br>inc               | error =<br>(FP+FN)/All                                        |
| independence,<br>categorical                                                                                          | intercept/st<br>d error                     |                                                                                                                                                                             |              | error = y -<br>ŷ                                                   | samples<br>k1+k2 = even more                                                                                                      | dis: if                                                                                                                                                                        | sensitivity =<br>TP/(TP+FN)                      | specificity =<br>TN/(TN+FP)                                   |
| cons: if not in set - y =<br>> 0% can use log(F)B1 +                                                                  |                                             | if error = 2, inc w of +ves                                                                                                                                                 |              | if error = -<br>2, in w of -                                       | complex                                                                                                                           | #features ><br>#samples, CV                                                                                                                                                    | +ve<br>predicted                                 | -ve predicted<br>val =                                        |
| Laplace estimation<br>(add 1), bad<br>estimator,<br>independent<br>predictor                                          | log(T/F)B2                                  | Error E = ΣEk   k∈outputs                                                                                                                                                   |              | Ves<br>Ek = $1/2(tk ak)^2$                                         | $\label{eq:product} \begin{array}{l} \min(  w  ^2) \mbox{ for linear} \\ \xi : \mbox{ how far } pt_i \mbox{ is from} \end{array}$ | $\begin{split} & wx_i+b>=1-\xi \text{ if } \\ & y_i=1 \\ & wx_i+b>=-1+\xi \text{ if } \\ & y_i=-1 \\ & max((\Sigma\lambda_i)-1/2(\lambda_i\lambda_jy_iy_jx_ix_j)) \end{split}$ | val =<br>TP/(TP+FP)                              | TN/(TN+FN)                                                    |
|                                                                                                                       |                                             | output oi = 1/(1+e <sup>-net i</sup> ) net                                                                                                                                  |              | 1/2(tk-ok) <sup>2</sup><br>net i =                                 | correct side                                                                                                                      |                                                                                                                                                                                | true error:<br>error on<br>true<br>underlying    | apparent error:<br>error on<br>example used<br>to train model |
| assumption -><br>unlikely                                                                                             |                                             |                                                                                                                                                                             |              | Σwij*oi                                                            | $min(  w   {+} C(\Sigma i {=} 1 {\rightarrow} n \xi_i)$                                                                           |                                                                                                                                                                                |                                                  |                                                               |
| LR: p =<br>e <sup>log(odds))</sup> /(1+e <sup>lo-</sup>                                                               | likelihood                                  | Inductive Bias, No Free Lunch IB: anything part of language                                                                                                                 |              | dist btw parallel<br>planes = z/  w                                | w   =<br>sqrt(w1+w2)                                                                                                              | distribution<br>(unmeasura                                                                                                                                                     | (underestimate<br>s TE)                          |                                                               |
| e <sup>log(odds))</sup> /(1+e <sup>lo-</sup> = mul. all<br>g(odds)) T x all (1-<br>F)<br>log(L) =sum i to n(log(Tn) + |                                             | influencing accessible,<br>hypothesis choice method of<br>other than training choosing<br>set                                                                               |              | generalization error<=<br>p(bar)(1-s <sup>2</sup> )/s <sup>2</sup> | p(bar) = avg<br>correlation,<br>s=strength                                                                                        | n: ability to                                                                                                                                                                  | Occam's<br>Razor: should<br>not be               |                                                               |
| sum(log(Fn))<br>R <sup>2</sup> =(SS(mean) -<br>SS(fit))/SS(mean)                                                      |                                             | NFL: for any 2 assuming<br>algorithms A&B, uniform<br>there exists a $P(x,y) \rightarrow \# of$                                                                             |              |                                                                    |                                                                                                                                   | unseen<br>cases                                                                                                                                                                | multiplied<br>beyond<br>necessity                |                                                               |
| ANNs                                                                                                                  | heeleen                                     | dataset for which A outperforms B                                                                                                                                           | data<br>whic | sets for<br>h A>B = #                                              |                                                                                                                                   |                                                                                                                                                                                | Overfitting:<br>memorizing<br>training set       | test error: error<br>on ex. held out<br>of training           |
| neuron = things that<br>hold number from 0<br>to 1                                                                    | boolean:<br>T=1,<br>F=0                     |                                                                                                                                                                             | B>A          |                                                                    |                                                                                                                                   |                                                                                                                                                                                | KNN                                              |                                                               |
| $\hat{y} = 1$ if<br>w1x1+w2x2+wnxn-<br>t(bias factor) >0                                                              | , -1 if <0                                  |                                                                                                                                                                             |              |                                                                    |                                                                                                                                   |                                                                                                                                                                                | select k: sqrt(<br>if n is even,<br>choose odd   | n), Ri =<br>{x:d(x,xi)<<br>d(x,x2),<br>i!=j}                  |
|                                                                                                                       |                                             |                                                                                                                                                                             |              |                                                                    |                                                                                                                                   |                                                                                                                                                                                | euclidean dist<br>=sqrt((x-x1) <sup>2</sup> +    | ance                                                          |



#### By **mvyjayanti**

cheatography.com/mvyjayanti/

Not published yet. Last updated 13th December, 2018. Page 1 of 3.

#### Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

# Cheatography

### data mining Cheat Sheet by mvyjayanti via cheatography.com/72036/cs/18263/

| Model Eval                                                                                                                                         |                                                                                             | Model Eval (cont)                                                                                                       |                                                                                                             | ROC and Lift Curves                                                      |                                                                   | Ensembles (cont)                                                                           |                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Holdout                                                                                                                                            | train on 2/3, test<br>on 1/3, one is<br>validation set<br>(high variance on<br>estimate)    | -                                                                                                                       | 2-tailed t. t alpha/2.<br>((meanVar)x(sqrt(n)<br>)) / S<br>v each fold to contain<br>ositives and negatives | ROC:<br>sensitivity vs.<br>(1-specificity),<br>higher val the<br>better, | sens: TP rate,<br>1-spec: FP rate                                 | incorrect pts<br>weighed by # that is<br>inversely<br>proportional to<br>training error    | w inc if<br>misclassifie<br>d, dec else<br>classifiers<br>combined                                          |
| Leave-one-<br>out                                                                                                                                  | train on N-1, test<br>on 1 (good<br>estimate)                                               | Decision Trees                                                                                                          |                                                                                                             | flatter line the<br>worse<br>Lift curves: find                           | find % of each                                                    |                                                                                            | by<br>weighting-<br>accuracy of                                                                             |
| K-folds Cross<br>Val                                                                                                                               | divide set into k<br>parts, LOO each,<br>repeat N times,<br>compute mean<br>and std dev for | asks a<br>question:<br>classifies<br>based on<br>T/F                                                                    | root,<br>internal(arrows to<br>and from),<br>external(arrows to)<br>(leaves)                                | % of each tota<br>response from<br>sum of all<br>y = +ve % / %<br>total  | +ve responses<br>from total +ve<br>responses<br>of x = % of total | Arcing(Adaptive<br>resample&combine):<br>like boosting but<br>change w by update<br>method | training set<br>eg. Arc x4:<br>w(x) =<br>$1+e(x)^4$<br>e(x)=times x<br>has been<br>misclassifie<br>d so far |
| Bootstrapping                                                                                                                                      | each<br>randomly draw N                                                                     | break into categories                                                                                                   | T/F and Y/N for each                                                                                        | k-means clust                                                            | tering                                                            |                                                                                            |                                                                                                             |
|                                                                                                                                                    | points (can<br>repeat), train, test<br>on S - S1                                            | P(Y T),<br>P(N T),<br>P(Y F),                                                                                           | GI <sup>2</sup> = 1-(Y F/(Y F +<br>N F)) <sup>2</sup> +(N F/(Y F +<br>N F)) <sup>2</sup>                    | user choose k,<br>initialize k centers<br>loop: assign pts               | ·                                                                 | depends on:<br>strength(perf of<br>individuals), diversity<br>(uncorrelated errors)        | bagging<br>error: from<br>reducing var<br>boosting<br>can reduce<br>bias&var  <br>bagging is >              |
| Compare 2<br>methods: H0:<br>meanLR =<br>meanNB, H1:                                                                                               | t=(meanNB-<br>meanLR)/S<br>(S:pooled<br>variance), reject                                   | P(N F)<br>Gl <sup>1</sup> =                                                                                             | 1-(Y T/(Y T +<br>N T)) <sup>2</sup> +(N T/(Y T +<br>N T)) <sup>2</sup>                                      | nearest those<br>centers, move<br>centroid of ass<br>pts                 | random,<br>optimizing<br>igned (total<br>distance) <sup>2</sup>   |                                                                                            |                                                                                                             |
| meanLR <mea<br>nNB</mea<br>                                                                                                                        | mea H0 if t>t alpha $Glall=(T/(T+F) \times Gl^{1})+(F/(T+F) \times Gl^{2})$                 |                                                                                                                         | returns local solution                                                                                      |                                                                          |                                                                   | base<br>classifier                                                                         |                                                                                                             |
| meanLR!=me         alpha/2.         H(S)=P(y)lo         H(S)           anNB         ((meanVar)x(sqrt(<br>n))) / S         H(S)=P(y)lo         H(S) |                                                                                             | find H(S <sup>true</sup> ) and<br>H(S <sup>false</sup> ), H(S)-<br>w1H(S <sup>true</sup> )-<br>w2H(S <sup>false</sup> ) | EnsemblesBagging:<br>bootstrap<br>aggregatingBoosting: changing<br>weights on pts and<br>building series of |                                                                          | boosting better or<br>overfit noisy                               | Random<br>forests: for<br>tree,choose<br>pts,for node,<br>features                         |                                                                                                             |
|                                                                                                                                                    |                                                                                             | w1 = T<br>instances/all<br>w1 = T                                                                                       | w2 = F<br>instances/all<br>w2 = F                                                                           |                                                                          | classifiers, start w=1                                            |                                                                                            | subset w/<br>best IG,split,<br>end,recurse,                                                                 |
|                                                                                                                                                    |                                                                                             | wi = i<br>instances/all                                                                                                 | wz = F<br>instances/all                                                                                     |                                                                          |                                                                   |                                                                                            | end                                                                                                         |

#### By mvyjayanti

cheatography.com/mvyjayanti/

Not published yet. Last updated 13th December, 2018. Page 2 of 3.

largest info gain, least GI

#### Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

# Cheatography

# data mining Cheat Sheet

by mvyjayanti via cheatography.com/72036/cs/18263/

| feature selection                                                                                                                                                        |                                                                                                                        |                                |    | Bias and Var (                                                                                        |                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|----|-------------------------------------------------------------------------------------------------------|-----------------|--|
| removing<br>irrelevant<br>info for a<br>better,<br>faster<br>model                                                                                                       | drop m<br>encode                                                                                                       | nissing values o<br>e them     | r  | error:<br>MSE = $(\hat{y}-\mu)^2$<br>var:<br>$E(\hat{y}E(\hat{y}))^2$<br>bias: $(E(\hat{y}-\mu)^2)^2$ | ^b<br>gi'<br>pa |  |
| drop: if<br>all values                                                                                                                                                   | if highl<br>one of                                                                                                     | y correlated,<br>them          |    | µ) <sup>2</sup> +noise<br>KNN,ANN,E                                                                   | DT:             |  |
| are the same                                                                                                                                                             |                                                                                                                        |                                |    | var: how mucl                                                                                         |                 |  |
| if low<br>correlatio<br>n with                                                                                                                                           | correlatio stepwise selection:                                                                                         |                                |    |                                                                                                       | lata<br>erro    |  |
| target <br>trees<br>with least                                                                                                                                           | then keep going until<br>validation error stops<br>dropping                                                            |                                |    | EM Expecta                                                                                            | atic            |  |
| info gain                                                                                                                                                                |                                                                                                                        | 0                              |    | hard clusterin                                                                                        |                 |  |
| beam or<br>heuristic<br>search                                                                                                                                           | for computation<br>interpretability  <br>genetic algorithms                                                            |                                |    | each pt only<br>belongs to or<br>cluster                                                              |                 |  |
| 1) filters:<br>all above<br>+ other<br>correlatio<br>n                                                                                                                   | 2) wrappers: build a<br>classifier with a<br>subset+eval on<br>validation data. but 2 <sup>d</sup><br>possible subsets |                                |    | EM:<br>automaticall<br>discover all<br>params for F<br>"sources"→                                     | <               |  |
| Bias and \                                                                                                                                                               |                                                                                                                        | we may not kn<br>source        |    |                                                                                                       |                 |  |
| PCA :<br>dimensiona<br>reduction                                                                                                                                         | ality                                                                                                                  | linear combo<br>of OG features | 5  | if we know µ<br>can find<br>likeliness                                                                | ı,ơ             |  |
| $\begin{array}{ll} \text{max. variance:} & \mu = E(y x) = T(uk) \\ \text{smallest \# until} & \hat{y} = f(x,\Theta) \\ 90\% \text{ var} \\ \text{explained} \end{array}$ |                                                                                                                        |                                | () | $\frac{1/sqrt(2\pi\sigma^2)}{p(-(x_i - \mu_\beta)^2/2\sigma_\beta^2)}$ $a_i=1-b_i=P(a_i$              |                 |  |

| Bias and Var (cor                                                                                                                                                           | EM E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| error: ^best<br>MSE = $(\hat{y}$ - given<br>$\mu$ ) <sup>2</sup> parar<br>var:<br>E $(\hat{y}E(\hat{y}))^2$<br>bias: $(E(\hat{y}$ -<br>$\mu$ ) <sup>2</sup> +noise          | clust<br>$\sigma_{\beta}^2 = (\mu_{\beta})^2 + (b_1 + \mu_{\beta})^2 +$ |      |
| KNN,ANN,DT: low                                                                                                                                                             | bias, high var                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | does |
| var: how much doe<br>var across dataset<br>systematic error pr<br>to fit                                                                                                    | came<br>Iterat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                                                                                                                                                                             | P(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| EM Expectation M clust.                                                                                                                                                     | "Wha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| hard clustering:<br>each pt only<br>belongs to one<br>cluster                                                                                                               | soft<br>clustering: can<br>belong to more<br>than one<br>cluster by %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | each |
| EM:<br>automatically<br>discover all<br>params for k<br>"sources" $\rightarrow$ but<br>we may not know<br>source<br>if we know $\mu$ , $\sigma$ ,<br>can find<br>likeliness | mixture<br>models:<br>probabilistic<br>way of soft<br>clustering<br>each cluster<br>Gaussian or<br>multinominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| $1/sqrt(2\pi\sigma^2)^*ex$<br>p(-(x <sub>i</sub> -<br>$\mu_\beta)^2/2\sigma_\beta^2)$<br>a <sub>i</sub> =1-b <sub>i</sub> =P(a <sub>i</sub> )                               | Bayesian<br>posterior: $b_i =$<br>$P(b x_i) =$<br>$(P(x_i b)P(b)) /$<br>$(P(x_i b)P(b) +$<br>$P(x_i a)P(a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |

| EM Expectation M clust. (cont)                                                                     | laximization                                                                                                              |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\sigma_{\beta}^2 = (b_1(x_{1-} \mu_{\beta})^2 +)$<br>/(b_1+b_2+)                                  | μ <sub>β</sub> =<br>(b1x1+b2x2+) /<br>(b1+b2+)                                                                            |  |  |  |
| em: places<br>randomly,for<br>each pt P(b x <sub>i</sub> ):<br>does it look like it<br>came from b | Working to<br>adjust ( $\mu_a$ ,<br>$\sigma_a^2$ ) and ( $\mu_\beta$ ,<br>$\sigma_\beta^2$ ) to fit<br>points<br>assigned |  |  |  |
| lterate until<br>convergence<br>P(a) = 1- P(b)                                                     | Could also<br>estimate priors:<br>P(b) =<br>(b1+b2+)/n                                                                    |  |  |  |
| "What proportion of the data is each distribution describing"                                      |                                                                                                                           |  |  |  |

#### By mvyjayanti

cheatography.com/mvyjayanti/

Not published yet. Last updated 13th December, 2018. Page 3 of 3. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com