Set of Quantities having same Dimensions

Sr .	Quantities	Dimensions
No.		
1	strain, refractive index, relative density, angle, solid angle, phase, distance gradient, relative permeability, relative permittivity, angle of contact, Reynolds number, coefficient of friction, mechanical equivalent of heat, electric susceptibility, etc.	$\left[M^{0} L^{0} T^{0}\right]$
2	Mass or inertial mass	[$M^{1} L^{0} T^{0}$]
3	Momentum and impulse	[$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$]
4	Thrust, Force, weight, tension, energy gradient	[$\mathrm{M}^{1} L^{1} \mathrm{~T}^{-2}$]
5	Pressure, stress, Young's modulus, bulk modulus, shear modulus, modulus of rigidity, energy density	[$\left.M^{1} L^{-1} T^{-2}\right]$
6	Angular momentum and Planck's constant	[$\left.M^{1} L^{2} T^{-1}\right]$
7	Acceleration, g and gravitational field intensity	[$\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}$]
8	Surface tension, free surface energy (energy per unit area), force gradient, spring constant	[$\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}$]
9	Latent heat and gravitational potential	[$\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$]
10	Thermal capacity, Boltzmann constant, entropy	$\begin{aligned} & {\left[M^{1} L^{2} T^{-2} K^{-}\right.} \\ & \left.{ }^{1}\right] \end{aligned}$
11	Work, Torque, internal energy, potential energy, kinetic energy, moment of force, ($\mathrm{q} / \mathrm{C}^{2}$), (LI^{2}), (qV), ($\left.\mathrm{V}^{2} \mathrm{C}\right),\left(\mathrm{I}^{2} \mathrm{Rt}\right),(\mathrm{VIt})$, ($\left.\mathrm{V}^{2} \mathrm{t} / \mathrm{R}\right),(\mathrm{PV}),(R T),(m L),(m c \Delta T)$	[$\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$]
12	Frequency, angular frequency, angular velocity, velocity gradient, radioactivity, (R/L), (1/RC), (1/ (LC) ${ }^{1 / 2}$)	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$]
13	$(1 / \mathrm{g})^{1 / 2},(\mathrm{~m} / \mathrm{k})^{1 / 2},(\mathrm{~L} / \mathrm{R}),(\mathrm{RC}),(\mathrm{LC})^{1 / 2}$, time	[$\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}$]
14	(VI), ($\left.{ }^{2} \mathrm{R}\right),\left(\mathrm{V}^{2} / \mathrm{R}\right)$, Power	[$\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}$]

Rules for Counting Significant Figures

For numbers greater than 1

-All non-zero digits are significant
-All zeroes between two non-zero digits are significant. The location of the decimal does not matter.
-If the number is without a decimal point, then the trailing zeroes are not significant.
-Trailing zeroes in the decimal part are significant.

For numbers less than 1

-Any zero to the right of a non-zero digit is significant.
-All zeroes between the decimal point and the first non-zero digit are not significant,

Fundamental or Base Quantities

The quantities which do not depend upon other quantities for their complete definition are known as fundamental or base quantities. e.g.: length, mass, time, etc.

Derived Quantities

The quantities which can be expressed in terms of the fundamental quantities are known as derived quantities
e.g.: Speed (= distance/time), Volume, acceleration, force, pressure,
etc.

Units of Physical Quantities

The chosen reference standard of measurement in multiples of which, a physical quantity is expressed is called the unit of the quantity.
e.g.: Physcial Quantity = Numerical Value x Unit

Supplementary Units	
Radian (rad)	for measurement of plane angle
Steradian (sr)	for measurement of solid angle

Prefixes used for different Powers of 10					
Power of 10	Prefix	Synbol	Power of 10	Prefix	Symbol
10^{18}	exa	E	10^{-1}	deci	d
10^{15}	peta	P	10^{-2}	centi	c
10^{12}	tera	T	10^{-3}	milli	m
10^{9}	giga	G	10^{-6}	micro	μ
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	kilo	k	10^{-12}	pico	p
10^{2}	hecto	h	10^{-15}	femto	f
10^{1}	deca	da	10^{-18}	atto	a

Some Fundamental Constants		
Constant	Symbol	Value
Gravitational Constant	G	$6.6^{*} 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Speed of Light in Vacuum	C	$3 * 10^{8} \mathrm{~ms}^{-1}$
Permeability of vacuum	μ	$4 \pi^{*} 10^{-7} \mathrm{Hm}^{-1}$
Permittivity of vacuum	ε	$8.85^{*} 10^{-12} \mathrm{Fm}^{-1}$
Planck's Constant	h	$6.63^{*} 10^{-34} \mathrm{Js}$
Atomic Mass Unit	amu	$1.66^{*} 10^{-27} \mathrm{~kg}$
Energy equivalent of 1 amu	MeV	$931.5 \mathrm{MeV}^{-31}$
Electron rest mass	me	$9.1^{*} 10^{-31}=0.511 \mathrm{MeV}$
Avogadro constant	Na	$6.02^{*} 10^{23} \mathrm{~mol}^{-1}$
Faraday Constant	F	$9.648^{*} 10^{4} \mathrm{C} \mathrm{mol}^{-1}$

Some Fundamental Constants (cont)

Stefan-Boltzmann Constant	σ	$5.67 * 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
Wien Constant	b	$2.8910-3^{\wedge} \mathrm{mK}$
Rydberg Constant	R ∞	$1.097 * 10^{7} \mathrm{~m}^{-1}$
Triple point for water	$\begin{aligned} & \mathrm{K} /{ }^{\circ} \mathrm{C} / \\ & { }^{\circ} \mathrm{F} \end{aligned}$	$273.16 \mathrm{~K}\left(0.01{ }^{\circ} \mathrm{C}\right)$
Molar volume of ideal gas	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	$22.4 \mathrm{~L}=22.4^{*} 10^{-3} \mathrm{~m}^{3} \mathrm{~mol}^{-}$

Order of Magnitude

Power of 10 required to represent a quantity.
$49=4.9^{*} 10^{1} \approx 10^{1} \rightarrow$ order of magnitude $=1$ $0.051=5.1^{*} 10^{-2} \approx 10^{-2} \rightarrow$ order of magnitude $=-2$

System of Units					
	MKS	CGS	FPS	MKSQ	MKSA
(i)	Length (m)	Length (cm)	Length (ft)	Length (m)	Length (m)
(ii)	Mass (kg)	Mass (g)	Mass (pound)	Mass (kg)	Mass (kg)
(iii)	Time (s)	Time (s)	Times (s)	Time (s)	Time (s)
(iv)	-	-	-	Charge (Q)	Current (A)
Fundamental Quantities in S.I. System					
Sr. No.		Physical Quantity		Name of Unit	Symbol
1	Mass			kilogram	kg
2	Length			meter	m
3	Time			second	s
4	Temperature			kelvin	K
5	Luminous Intensit			candela	Cd
6	Electric Current			ampere	A
7	Amount of Substance			mole	mol

Dimensional Formula

The relation which expresses physical quantities in terms of appropriate powers of fundamental quantities.

Use of Dimensional Analysis

To check the dimensional correctness of a given physical relation.
To derive relationship between different physical quantities.
To convert units of a physical quantity from one system to another.

By Mudassir Khan
(mvdassir_)
cheatography.com/mvdassir/

Published 19th August, 2022.
Last updated 20th August, 2022.
Page 2 of 3 .

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords!
http://crosswordcheats.com

Units of Important Physical Quantities			
Physical Quantity	Unit	Physical Quantity	Unit
Angular acceleration	rad s ${ }^{-2}$	Frequency	hertz
Moment of Inertia	$\mathrm{kg} \mathrm{m}{ }^{2}$	Resistance	$\begin{aligned} & \mathrm{kh} \mathrm{~m}^{2} A^{-2} \\ & \mathrm{~s}^{-3} \end{aligned}$
Self-Inductance	henry	Surface Tension	N / m
Magnetic Flux	weber	Universal Gas Constant	$\mathrm{JK}_{1}^{-1} \mathrm{~mol}^{-}$
Pole Strength	A m	Dipole Moment	C m
Viscosity*	poise	Stefan Constant	$\begin{aligned} & W m^{-2} K^{\wedge}- \\ & 4^{\star} \end{aligned}$
Reactance	ohm	Permittivity of free space ε_{0}	$\mathrm{C}^{2} / \mathrm{Nm}^{2}$
Specific Heat	J / kg ${ }^{\circ} \mathrm{C}$	Permeability of free space μ_{\circ}	weber/ A m
Strength of magnetic field	$\begin{aligned} & \mathrm{NA}^{-1} \\ & \mathrm{~m}^{-1} \end{aligned}$	Planck's Constant	Js
Astronomical distance	Parsec	Entropy	J/K

Error in Summation and Difference
$\mathrm{x}=\mathrm{a}+\mathrm{b}$ then, $\Delta \mathrm{x}= \pm(\Delta \mathrm{a}+\Delta \mathrm{b})$

Error in Product and Division

$$
\frac{\Delta X}{X}=|a| \frac{\Delta Y}{Y}+|b| \frac{\Delta Z}{Z}
$$

If $X=Y^{a} Z^{b}$ then the maximum possible fractional error in X is given by the above equation

By Mudassir Khan
(mvdassir_)
cheatography.com/mvdassir/

Published 19th August, 2022.
Last updated 20th August, 2022.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

