

Gaseous State Cheat Sheet

by Mudassir Khan (mvdassir_) via cheatography.com/160173/cs/33710/

Conversions

Volume

1 Litre= 10³ mL= 10³ cm³= 10⁻³ m³= 1 dm³

Pressure

1 atm= 76 cm of Hg= 760 mm of Hg= 760

1 atm= 1.01*10⁵ Nm²

1 atm= 1.01*10⁵ Pa

1 bar= 0.9862 atm≈ 1 atm

mL= milli-litre

cm= centimeter

m= meter

dm= decimeter

atm= atmosphere

N= Newton

Pa= Pascals

Boyle's Law

Boyle's Law PV = K $P_1V_1 = P_2V_2$

If the temperature is constant, as pressure of a gas increases the volume decreases.

According to Boyle's law,

V ∝ P-

or, PV = constant @particular temperature.

or, $P_1V_1=P_2V_2$

Charles' Law

Charles's Law $\frac{V}{T} = K \frac{V_1}{T_1} = \frac{V_2}{T_2}$

If the pressure is constant, as temperature of a gas increases the volume increases.

Temperature must be in Kelvin for all gas laws

According to Charles' Law,

V ∝ T @constant Pressure

therefore, $V_1/T_1 = V_2/T_2$

or, $V_1T_2 = V_2T_1$

Gay-Lussac's Law

Gay-Lussac's Law $\frac{P=K}{T}$ $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

As the temperature of an enclosed gas increases, the pressure increases at constant volume.

According to Lussac's law,

P « T

or, PT⁻¹ = constant @constant volume

 $P_1T_2 = P_2T_1$

Ideal Gas Equation

PV=nRT

or, $PVT^{-1} = constant = nR$

R= Universal Gas Constant

Universal Gas Constant

[R] = Lit atm K^{-1} mol⁻¹ = work done per Kelvin per mole

R= 0.0821 Lit atm K⁻¹ mol⁻¹

R= $8.314 \text{ J K}^{-1} \text{ mol}^{-1} = 8.314 \text{ Pa cm}^3 \text{ K}^{-1}$ mol $^{-1}$

R= 1.987 cal K⁻¹ mol⁻¹

R= 5.189* 10¹⁹ eV K⁻¹ mol⁻¹

Dalton's Law of Partial Pressure

According to Dalton's Law of Partial Pressure,

 $\mathsf{P} = \mathsf{P}_1 {+} \mathsf{P}_2 {+} \mathsf{P}_3 {+} \ldots {+} \mathsf{P}_n = \Sigma \mathsf{P}_n$

Where P is the total pressure and P_1 , P_2 ,

 P_3 ... are the partial pressures of gases 1, 2, 3 and so on.

P₁= P*x₁

where x_1 is the mole fraction of gas 1.

Graham's Law of Diffusion

$$\begin{split} r \propto & \sqrt{\frac{1}{M}} \propto \sqrt{\frac{1}{d}} \\ \frac{r_1}{r_2} = & \sqrt{\frac{M_2}{M_1}} = \sqrt{\frac{d_2}{d_1}} = \frac{n_1}{n_2} \\ \frac{r_1}{r_2} = & \frac{P_1}{P_2} \sqrt{\frac{M_2}{M_1}} \end{split}$$

r= rate of diffusion

M= molar mass of given gas

d= density of given gas

n= number of moles of given gas

Velocity of Gas Particles

 $\begin{aligned} & \text{Most Probable Velocity} \\ & \alpha = \sqrt{\frac{2Rt}{M}} = \sqrt{\frac{2PV}{M}} \\ & \text{Average Velocity} \\ & v = \sqrt{\frac{8RT}{M}} = \sqrt{\frac{8RPV}{11M}} \\ & \text{Root Mean Square Velocity} \\ & u = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3PV}{M}} \end{aligned}$

α:v:u = 1 : 1.128 : 1.224

Kinetic Energy

$$\begin{split} PV &= \frac{1}{3}mNu^2 \\ PV &= \frac{1}{3}Mu^2 \\ \text{Molar Kinetic Energy} \\ K.E. &= \frac{1}{2}Mu^2 = \frac{3}{2}PV = \frac{3}{2}RT \\ \text{Molecular Kinetic Energy} \\ K.E. &= \frac{9}{2}\frac{RT}{N_u} = \frac{3}{2}k_bT \end{split}$$

k = Boltzmann Constant = 1.380649×10^{-23} joule per kelvin

Van der waal's Equation

 $\begin{array}{l} \mbox{Van der waal's Equation} \\ (P+\frac{am^2}{V^2})(V-nb) = nRT \\ \mbox{Dimensions of a \& b} \\ [a] = atm^*L^2 * mol^{-2} = Nm^4mol^{-2} \\ [b] = L^*mol^{-1} = m^3mol^{-1} \end{array}$

Molecular Collision

Critical Temperature $t_c = \frac{8}{27Rb}$ Critical Pressure $P_c = \frac{a}{2Rb^2}$ Critical Volume $V_c = 3b$ Relation between T, V & P $V_c = 3b$

By **Mudassir Khan** (mvdassir_)

cheatography.com/mvdassir/

Published 18th August, 2022. Last updated 18th August, 2022. Page 1 of 1. Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! http://crosswordcheats.com