

Basics of Chemistry Cheat Sheet

by Mudassir Khan (mvdassir_) via cheatography.com/160173/cs/33709/

Mole

In the field of chemistry, a mole is defined as the amount of a substance that contains exactly 6.02214076 * 10²³ 'elementary entities' of the given substance.

Number of Moles

 $\frac{Number-of-Particles}{6.02*10^{23}} = \frac{Given-Mass}{Molar-Mass} = \frac{Given-Volume-in-Litres}{224Litres} = Number-of-Moles$

STP vs NTP			
Properties	STP	NTP	
Temperature (in Kelvin)	273.16 K ≈ 273 K	293.16K ≈ 293 K	
Temperature (in Celsius)	0°C	20°C	
Pressure	1 bar= 0.9862 atm≈ 1 atm	1 atm	
Pressure (in Nm ²)	10 ⁵ Nm ²	1.01*10 ⁵ Nm ²	
K= Kelvin↔(temperature)			

°C= Degree Celsius↔(temperature) atm= atmosphere↔(pressure) Nm²= Newton*(meter)²↔(pressure)

> By **Mudassir Khan** (mvdassir_)

cheatography.com/mvdassir/

Percentage Composition of an Element

 $\frac{n^*(Atomic-mass-of-element)}{Molar-mass-of-compound}*100$

n= Number of atoms of the element in one molecule of the compound

Temperature Conversions

^oF= Degree Fahrenheit ^oC= Degree Celsius

K= Degree Kelvin

volume

Laws of Chemistry		
LAWS	SCIENTISTS	DATE
1. Law of Conservation of Mass	Antoine Lavoisier	1744
2. Law of Definite Composition/Pro- portions	Joseph Proust	1799
3. Law of Multiple Proportions	John Dalton	1804
4. Law of Gaseous	Gay Lussac	1808

Conversions

Volume

1 Litre= 10³ mL= 10³ cm³= 10⁻³ m³= 1 dm³

Pressure

1 atm= 76 cm of Hg= 760 mm of Hg= 760

1 atm= 1.01*10⁵ Nm²

1 atm= 1.01*10⁵ Pa

1 bar= 0.9862 atm≈ 1 atm

mL= milli-litre
cm= centimeter
m= meter
dm= decimeter

atm= atmosphere N= Newton

Pa= Pascals

Published 18th August, 2022. Last updated 18th August, 2022. Page 1 of 1. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!

https://apollopad.com