

BIO 101 Lab Final Cheat Sheet

by muunsey via cheatography.com/212475/cs/46164/

Lab 9: Cellular Respiration 8
Fermentation

Fermentation	
Terms to Remember	Procedures
Glycolysis - the process by which glucose is broken into 2 pyruvate	Glycolysis takes place in the cytoplasm and produces 2 ATP
Calcium Carbonate - CaCO ₃ , chalk	The Krebs Cycle takes place in the mitochondria and produces 2 ATP
Aerobic - with oxygen	The Electron Transport Chain takes place in the folds of the cristae of the mitochondria and produces 32 ATP
Electron Transport Chain (E.T.C.) - a protein complex through which electrons move to extract energy, produces the	Alcoholic Fermentation Equation: $C_6H_{12}O_6 \rightarrow$ $2(C_2H_5OH) +$ $2CO_2 +$ $2ATP$

Lab 9: Cellular Respiration & Fermentation (cont)

Fermentation (cont)		
ATP - Adenosine	Rates of Fermen- tation Starch =	
Tripho- sphate, cellular energy	lowest rate of fermentation, must break down into smaller parts before fermentation can begin Sucrose = faster rate of fermentation, is a disaccharide and there is less to break down Glucose = highest rate of fermentation, is a mono saccharide and is in its simplest form	
Lactic Acid - build up in muscle tissue causing soreness and cramping	Yeast = Saccha- romyces cerevisiae	
Mitoch- ondria - a double membrane	Aerobic Respiration Equation: $C_6H_{12}O_6 + 6O_2 - 6CO_2 + 6H_2O +$	

ATP

Respirometer:

used to measure

the rate of oxygen consumption

Lab 9: Cellular Respiration & Fermentation (cont)

Anaerobic -	KOH was used
without	to capture the
oxygen	carbon dioxide
	produced by the
	live beans, so
	that we are just
	measuring the
	oxygen being
	emitted
Kreb's Cycle	Latic Acid
- a cyclical	Equation:
pathway that	C ₆ H ₁₂ O ₆ ->
takes place	2(C ₃ H ₆ O ₃) +
in the matrix	2ATP
of the	
mitochondria	
Cellular	The cramping of
Respiration =	muscles is
aerobic	caused by the
Fermentation	lack of oxygen
= anaerobic	in the cells.

Lab 10: Molecular Biology - DNA in Biotechnology

Terms to	Procedures
Remember	

Lab 11: DNA Fingerprint Analysis and Cell Division

Terms to	Procedures
Remember	

Lab 12: Mendelian Genetics

Terms to	Procedures
Remember	

most ATP

By **muunsey** cheatography.com/muunsey/

bound

organelle that

generates ATP Budding -

a form of

asexual

reproduction used by yeast

> Not published yet. Last updated 21st April, 2025. Page 1 of 1.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com