| Litte's Law |  |  |
| :---: | :---: | :---: |
| WORK IN PROGRESS | $W I P=T H^{*} C T$ |  |
| Cycle Time | CT | WIP/TH |
| Throughput | TH | WIP/CT |
| Bottleneck Rate | rb | $=1 /$ Max Avg <br> Processing Time |
| Raw <br> Processing Time | To | Sum of Avg <br> Processing Time |
| Critical WIP |  | rb*To |


| BEST CASE PERFORMANCE |  |  |
| :--- | :--- | :--- |
| CT BEST | if $w<=$ Wo | To |
|  | otherwise | $\mathrm{W} / \mathrm{rb}$ |
| TH BEST | if $w<=$ Wo | $w / T o$ |
|  | otherwise | rb |


| WORST CASE PERFORMANCE |  |
| :--- | :--- |
| CTworst | $=w^{*}$ To |
| THworst | $1 /$ To |

## PRACTICAL WORST CASE

| CTpwc | To $+((w-1) / \mathrm{rb})$ |
| :--- | :--- |
| THpwc | $(w /(W o+w-1)) \mathrm{rb}$ |

## Sample Midterm Qsle Midterm Qs (Cont)

b) A company supplying seats to an auto assembly plant sends trucks to its customer at an average rate of 6 trucks per day. Given the travel time to the customer is an average of three days, what is the average number of trucks in transit at any given time?
TH = 6 trucks/day
CT = 3 days
WIP = TH x CT = 18 trucks

## PREEMPTIVE ONLY

Natural Proc. Time to
STD of Nat. Proc. $\quad$ o
Time
SCV of Nat. Proc. $\quad \mathrm{co}^{2} \quad \sigma o^{2} / \mathrm{to}^{2}$
Time
STD of Nat. Proc. mf
Time
Mean Time to mr
Repair

STD of Time to or
Repair

| Mean Availability | A | $\mathrm{mf} /(\mathrm{mf}+\mathrm{mr})$ |
| :--- | :--- | :--- |
| SCV of Time to <br> Repair | $\mathrm{cr}^{2}$ | $\sigma r^{2} / \mathrm{mr}$ |
| Mean Eff. Time <br> with Preemptive | $\mathrm{te}(\mathrm{Po})$ | $\mathrm{to} / \mathrm{A}$ |
| Outages |  |  |

PREEMPTIVE PLUS NON PREEMPTIVE

| Mean batch size | Ns |  |
| :---: | :---: | :---: |
| Mean batch size | ts |  |
| STD of Setup Time | OS |  |
| Mean Eff. Time with Preemptive Outages | te | te(PO)+ts/Ns |
| std. dev. Squared of eff. Time | $\sigma e^{2}$ | $\begin{aligned} & \mathrm{te}(\mathrm{po})^{2} x \\ & \mathrm{~cd}(\mathrm{po})^{2}+(\mathrm{r}- \\ & \left.\mathrm{s}^{2} / \mathrm{Ns}\right)+(\mathrm{Ns}- \\ & \left.1 / \mathrm{Ns}^{2}\right) \times \mathrm{ts}^{2} \end{aligned}$ |
| SCV of Eff. Time with Preemptive Outages | $c e^{2}$ | $\sigma \mathrm{e}^{2} / \mathrm{te}^{2}$ |
| Mean Utilization | u | te/ta |
| SCV of interarrival times | $\mathrm{ca}^{2}$ |  |
| SCV of interdeparture times | $\mathrm{cd}^{2}$ | $\begin{aligned} & 1+\left(1-u^{2}\right) x \\ & \left(\mathrm{ca}^{2}-1\right)+u^{2}(c- \\ & \left.\mathrm{e}^{2}-1\right) \end{aligned}$ |

Published 3rd October, 2019.
Last updated 3rd October, 2019.
Page 1 of 2.

PREEMPTIVE PLUS NON PREEMPTIVE (cont)

| CTQ | $\left(\mathrm{ca}^{2}+\mathrm{ce}^{2}\right) / 2 \times \mathrm{u} /(1-\mathrm{u}) \times$ te |
| :--- | :--- |
| CT | CTQ + te |
| WIP | CT/ta |
| WIP | CT/ta |

## Sample Midterm Qsle Midterm Qs (Cont)

b) A company supplying seats to an auto assembly plant sends trucks to its customer at an average rate of 6 trucks per day. Given the travel time to the customer is an average of three days, what is the average number of trucks in transit at any given time?
TH = 6 trucks/day
$\mathrm{CT}=3$ days
WIP $=T H \times C T=18$ trucks

| Sample Midterm Qs |  |
| :---: | :---: |
| SCV of Effective processing time | $\begin{aligned} & \mathrm{ce}^{2}=\left(\left(\sigma o^{2}+\left(\sigma s^{2} / \mathrm{N}\right)+\right.\right. \\ & \left.(\mathrm{Ns}-1) / \mathrm{Ns}^{2} \times \mathrm{ts}^{2}\right) / \mathrm{te} \end{aligned}$ |
| Utilization | $\mathrm{u}=(\mathrm{te} / \mathrm{ta})=(\mathrm{te}(\mathrm{np}) / \mathrm{ta})$ |
| Utilization (coffee sho) | $\mathrm{u}=\mathrm{ra} / \mathrm{re}=\mathrm{te} / \mathrm{ta}$ |
| WIP (M/M/1) | $\mathrm{u} /(1-\mathrm{u})$ |
| WIP (M/M/1) | $\mathrm{u} /(1-\mathrm{u})$ |
| CT (M/M/1) | te/(1-u) |

By musikdr
cheatography.com/musikdr/

## Sponsored by Readable.com

Measure your website readability!
https://readable.com

## Sample Midterm Qs (Cont)

3. a) Compute the average cycle time at machine 1.

CTq1 $=\left(\mathrm{Ca}^{2}+\mathrm{Ce}^{2}\right) / 2 \mathrm{x}(\mathrm{u} /(1-\mathrm{u})) \mathrm{x}$ te u = (te/ta)
b) Compute the mean and coefficient of variation of the time between departures from Machine 1.
$\operatorname{ta}(2)=\operatorname{td}(1)=\operatorname{ta}(1)$
$c d^{2}=1+\left(1-u^{2}\right) x\left(c a^{2}-1\right)+u^{2}\left(c e^{2}-1\right)$
$\mathrm{u} 2=\mathrm{te} 2 / \mathrm{ta2}=18 / 22$
c) Compute the average cycle time at machine 2
$\mathrm{CT}(2)=\mathrm{CTq}(2)+\mathrm{te}(2)$ (note use u2 to calculate CTq(2)
d) Calculate the total CT and WIP of the system (combining machine 1 and 2 ).

Total CT = CT(1) + CT(2)
From Little's Law
Total WIP = CT x TH = CT/ta
e) Now suppose the line must produce both products in equal proportion, i.e., one unit of Product 1 for each unit of
Product 2. Estimate the bottleneck rate and raw process time of the line under this product mix.
Hint: Think about the what the average processing time will be at each machine.
Processing time at (M1 + M2)/\#of machines (2 calculations .. 1 for each product)
rb $=1$ /largest processing
to $=$ to1 + to2 (answer from processing time)

## Kendall Notation

| M | Memoryless or exponential |
| :--- | :--- |
| D | Deterministic |
| G | General |

G/G/1 not exponential, gives approx CT and CTq

M/M/1 exponential, infinite source population unlimited queue length

## M/M/1 Queing

WIP $=u /(1-u)$
CT = WIP/ra $=\mathrm{te} /(1-\mathrm{u})$
CTq $=$ CT-te $=(u \times t e) /(1-u)$
WIPq $=\mathrm{raCTq}=\mathrm{u}^{2} /(1-\mathrm{u})$

## G/G/1 QUE

$C T=\left(\left(\mathrm{ca}^{2}+\mathrm{ce}^{2}\right) / 2\right)(\mathrm{u} /(1-\mathrm{u}) \mathrm{x}$ te

## M/M/1/b

WIP $=u /(1-u)-\left((b+1) u^{b+1}\right) / 1-u^{b+1}$
$\mathrm{TH}=\left(\left(1-\mathrm{u}^{\mathrm{b}}\right) /\left(1-\mathrm{u}^{\mathrm{b}+1}\right) \times \mathrm{ra}\right.$

- Smaller buffer sizes bring greater losses relative to uncapacitated system


By musikdr
cheatography.com/musikdr/

Published 3rd October, 2019
Last updated 3rd October, 2019.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

