

Network Analysis with Python and NetworkX Cheat Sheet by RJ Murray (murenei) via cheatography.com/58736/cs/15946/

Basic graph manipulation

import networkx as nx
G=nx.G raph()
G=nx.M ult iGr aph()
G.add_ edg es_fro $m([(0,1),(0,2),(1,3),(2$,
4)]
nx.dra w_n etw orkx(G)
G.add_ nod e(' A', rol e=' man ager')
G.add_ edg e(' A', 'B' ,re lation = 'friend')

- edge

Create a graph	nodes of bipartite graph
allowing parallel bipart ite.pr oje cte d_g raph (B, X) edges	Bipartite projected
Create graph from edges	graph - nodes with bipartite friends in
Draw the	common
P=bipa rti te.w ei ght ed_ pro jec ted _gr Add a $\operatorname{aph}(B, X)$ node	projected graph with
Add an edge	weights (number
Set attribute of a node	of friends in common)

G.node ['A'], G.edge [('A', 'B')]

By RJ Murray (murenei)
cheatography.com/murenei/
tutify.com.au

Published 4th June, 2018.
Last updated 4th June, 2018.
Page 1 of 5 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Network Connectivity: Connected Components	
nx.is_ con nec ted (G)	Is there a path between every pair of nodes?
nx.num ber _co nne cte d_c omp on e nts(G)	\# separate components
nx. nod e_c onn ect ed_com pon en $t(G, N)$	Which connected component does N belong to?
nx.is_ str ong ly_ con nec ted(G)	Is the network connected directionally?
nx.is_ wea kly _co nne cted(G)	Is the directed network connected if assumed undirected?

Common Graphs
G=nx.k ara te_ clu b_g raph Karate club graph (social () network) G=nx.p ath _gr aph (n) Path graph with n nodes G=rand om_ reg ula r_g rap - Random d-regular graph on $h(d, n)$ n-nodes

See NetworkX Graph Generators reference for more.
Also see "An Atlas of Graphs" by Read and Wilson (1998).

Influence Measures and Network Centralization

Influence Measures and Network Centralization (cont)	
nx.edg e_b etw een nes s_c ent ral ity(G)	E
nx.edg e_b etw een nes s_c ent ral ity _su b G , \{s ubset\})	$\text { se } \mathrm{t}$
Normalization: Divide by number of pairs of nodes.	
PageRank and Hubs \& Authorities Algorithms	
nx.pag era nk(G, alpha=0.8)	Scaled PageRank of G with dampeninc parameter
h, a=nx.hi ts (G)	HITS algorithm - outputs 2 dictio- naries (hubs, authorities',
h,a=nx.hi ts(G,m ax_ ite $r=1$ 0, n orm ali zed =True)	Constrained HITS and normalized by sum at each stage

Centrality measures make different assumptions about what it means to be a "central" node. Thus, they produce different rankings.

Network Evolution-Real-world Applications	
G.degree (), G.in_d egree (), G.out_deg ree ()	Distributior of node
Preferential Attachment Model	degrees Results in power law
	-> many nodes with
	low degrees;
	few with
high	
degrees	

dc=nx.d eg ree _ce ntr ali ty (G)	```Degree G=bara bas i_a lbe rt_gra ph(n,m) centrality for network```	Preferentic Attachmen Model with
dc [node]	Degree centrality for a node	n nodes and each new node
nx.in_ deg ree _ce ntr ali ty (G), nx.out _de g re e_c ent ral ity(G)	DC for directed networks	attaching to m existing nodes
cc=nx.c lo sen ess _ce ntr ali ty (G, n orm al	Closeness	
i zed =True)	centrality Small World model (norma- lised) for the network	High average degree (global clustering)
cc [node]	Closeness centrality for an individual	and low average shortest path
	$\mathrm{G}=$ watt s_s tro gat z_g rap $\mathrm{h}(\mathrm{n}, \mathrm{k}, \mathrm{p})$	Small
bC=nx.b et wee nne ss_ cen tra lity (G)		World network of n nodes, connected to its k nearest neighbours, with chance $p \mathrm{c}$ rewiring
..., normal ize d=T rue ,...)	Normalized betwee- nness centrality	
..., endpoi nts =False, ...)	BC excluding endpoints	
..., K=10,...)	BC approx- ${ }^{G}=$ conn ect ed_ wat ts_ str oga tz_ gra ph(imated $n, k, p, t)$ using random sample of K nodes	$t=\max$ iterations to try to ensure connected graph
```nx.bet wee nne ss_ cen tra lit y_s ubs et( G, { sub set})```	BC G=newm an_ wat ts_ str oga tz_ gra ph( $n, k$ calculated ${ }^{\prime}$ p) on subset	$p=$ probab   ility of   adding (no   rewiring)
	Link Prediction measures	How likely are 2 nodes to connect, given an existing network

Published 4th June, 2018.
Last updated 4th June, 2018.
Page 2 of 5.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Network Evolution - Real-world Applications (cont	
nx.com mon _ne igh bor s(G, n1, n2)	Calc common neighbors of nodes n1, n2
nx.jac car d_c oef fic ient (G)	Normalised common neighbors measure
nx.res our ce_ all oca tio n_i ndex   (G)	Calc RAI of all nodes not already connected by an edge
nx.ada mic_ad ar_ ind ex(G)	As per RAI but with log of degree of common neighbor
nx.pre fer ent ial _at tac hme nt(G )	Product of two nodes' degrees
Community Common Neighbors	Common neighbors but with bonus if they belong in same 'community'
nx.cn_ sou nda raj an_ hop cro ft(n 1, n2)	CCN score for $n 1$, n2
G.node ['A '][ 'co mmu nit y']=1	Add community attribute to node
nx.ra_ ind ex_ sou nda raj an_ hop cro ft(G)	Community   Resource   Allocation score

These scores give only an indication of whether 2 nodes are likely to connect.
To make a link prediction, you would use these scores as features in a classification ML model.


By RJ Murray (murenei)
cheatography.com/murenei/
tutify.com.au

Published 4th June, 2018.
Last updated 4th June, 2018.
Page 3 of 5 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

