
Design Patterns Cheat Sheet
by Mihir Solanki (mtechdev) via cheatography.com/26261/cs/41174/

Creational PatternsCreational Patterns

Factory Method

Provides an interface for creating objects in a superclass, but
allows subclasses to alter the type of objects that will be created.

Abstract Factory

Lets you produce families of related objects without specifying
their concrete classes.

Builder

Lets you construct complex objects step by step. The pattern
allows you to produce different types and representations of an
object using the same construction code.

Prototype

Lets you copy existing objects without making your code
dependent on their classes.

Singleton

Lets you ensure that a class has only one instance, while
providing a global access point to this instance.

Creational patterns provide various object creation mechanisms,
which increase flexibility and reuse of existing code.

Behavioural Design PatternsBehavioural Design Patterns

Chain of Responsibility

Lets you pass requests along a chain of handlers. Upon receiving
a request, each handler decides either to process the request or
to pass it to the next handler in the chain.

Command

Turns a request into a stand-alone object that contains all inform‐
ation about the request. This transformation lets you pass
requests as a method arguments, delay or queue a request's
execution, and support undoable operations.

Behavioural Design Patterns (cont)Behavioural Design Patterns (cont)

Iterator

Lets you traverse elements of a collection without exposing its
underlying representation (list, stack, tree, etc.).

Mediator

Lets you reduce chaotic dependencies between objects. The
pattern restricts direct communications between the objects and
forces them to collaborate only via a mediator object.

Momento

Lets you save and restore the previous state of an object without
revealing the details of its implementation.

Observer

Lets you define a subscription mechanism to notify multiple
objects about any events that happen to the object they're
observing.

State

Lets an object alter its behaviour when its internal state changes.
It appears as if the object changed its class.

Strategy

Lets you define a family of algorithms, put each of them into a
separate class, and make their objects interchangeable.

Template Method

Defines the skeleton of an algorithm in the superclass but lets
subclasses override specific steps of the algorithm without
changing its structure.

Visitor

Lets you separate algorithms from the objects on which they
operate.

By Mihir SolankiMihir Solanki (mtechdev)
cheatography.com/mtechdev/

Not published yet.
Last updated 4th November, 2023.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/mtechdev/
http://www.cheatography.com/mtechdev/cheat-sheets/design-patterns
http://www.cheatography.com/mtechdev/
https://readable.com

Design Patterns Cheat Sheet
by Mihir Solanki (mtechdev) via cheatography.com/26261/cs/41174/

Structural Design PatternsStructural Design Patterns

Adapter

Allows objects with incompatible interfaces to collaborate.

Bridge

Lets you split a large class or a set of closely related classes into
two separate hierarchies—abstraction and implementation—‐
which can be developed independently of each other.

Composite

Lets you compose objects into tree structures and then work with
these structures as if they were individual objects.

Decorator

Lets you attach new behaviours to objects by placing these
objects inside special wrapper objects that contain the behaviors.

Facade

Provides a simplified interface to a library, a framework, or any
other complex set of classes.

Flyweight

Lets you fit more objects into the available amount of RAM by
sharing common parts of state between multiple objects instead of
keeping all of the data in each object.

Proxy

Lets you provide a substitute or placeholder for another object. A
proxy controls access to the original object, allowing you to
perform something either before or after the request gets through
to the original object.

Structural patterns explain how to assemble objects and classes into
larger structures while keeping these structures flexible and efficient.

By Mihir SolankiMihir Solanki (mtechdev)
cheatography.com/mtechdev/

Not published yet.
Last updated 4th November, 2023.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/mtechdev/
http://www.cheatography.com/mtechdev/cheat-sheets/design-patterns
http://www.cheatography.com/mtechdev/
https://readable.com

	Design Patterns Cheat Sheet - Page 1
	Creational Patterns
	Behavioural Design Patterns

	Design Patterns Cheat Sheet - Page 2
	Structural Design Patterns

