Cheatography

Physics Praxis Cheat Sheet by Tischler (MsRTischler) via cheatography.com/202291/cs/42928/

Nature of Science:	ce: 15 questions, 12%		
Vector	magnitude NO dire	ction Ex= speed, distance	
Scalar	magnitude & Direc cement	tion. Ex= acceleration, displa-	
Significant Figures	all digits after the f	rst <i>non-zero</i> are significant	
	ex: 0.00410 3 sig figs, 23840100 6 sig figs		
	leading zeros don't count		
	adding round to # with the fewest decimals		
Accuracy	ex:how close resul	ts are to the true value	
Precision	how close results are to one another		
Systematic Error	consistent error		
Acceleration	v/t	1/2gt ²	
Weight	W=mg=mass X gravity		
Work	W=Force x distance		

Matter and Energy: 19 questions, 15%

Bohrelectrons move in fixed orbitals (shells) and not anywheremodelin between and that each orbit (shell) has a fixed energy

Particles	alpha=	<i>beta</i> =high	<i>gamma</i> =shortest
	2p,2n	energy, high	wavelength electroma-
	bound	speed electrons	gnetic waves
Fission	breaks	releases energy ex.	atom smashing
Fusion	combines	releases energy ex.	sun
Energy	radiation=	conduction=	convection= fluids
transfer	emitted	touch	

Matter and Energy: 19 questions, 15% (cont)			
Thermo-	1st law=	2nd law=	3rd law= A perfect crystal
dyn-	conservation	entropy	at zero Kelvin has zero
amics	of energy	increases	entropy
Ideal	Boyle's law	pressure and	d volume of a gas have an
Gas Law	PV=nRT	inverse relat	ionship
Kinetic	energy of	=1/2mv ²	
energy	motion		
Potential	stored	=mgh	
energy	energy		
PE=KE	mgh=1/2mv ²	mgh=1/2mv-	+ mg(2R)
ME= KE + PE	velocity b4 impact: square root (2gh)		

Waves: 21 questions, 17%

Transverse waves	motion in which all points on a wave oscillate along paths at right angles to the direction of the wave's advance. Ex Water ripples
Longit- udinal waves	vibration of medium is parallel to the direction the wave travels and displacement of the medium is in the same direction of the wave propagation. Ex: sound
Mechanical waves	an oscillation of matter, and transfers energy through a material medium. ex: sound, water
Electroma- gnetic	formed when an electric field couples with a magnetic field. ex. light, gamma
Compre- ssion waves	the particle motion is in the same direction in which the wave is propagating i.e. longitudinal

Sponsored by **Readable.com** Measure your website readability! https://readable.com

By Tischler (MsRTischler)

Published 4th April, 2024. Last updated 4th April, 2024. Page 1 of 4.

Cheatography

Physics Praxis Cheat Sheet by Tischler (MsRTischler) via cheatography.com/202291/cs/42928/

Waves: 21 questions, 17% (cont)

Doppler effect:	the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave	
	moving away= longer	towards=shorter
Sound	Sonic boom= shock waves created when an object travels through the air faster than the speed of sound	
	<i>sound barrier</i> sudden increase happens when an object approx	in aerodynamic drag that baches the speed of sound
	Pitch=frequency	Loudness=intensity

Waves pt 2: 21 questions, 17% (copy)

Snell's	relationship between angles of incidence & refraction
law:	

	<i>refraction</i> = the bending of light or sound as it passes		
	through something like a wall (sound) or a window (light).		
	reflection= the throwing back	without absorbing it.	
	n1sin01 = n2sin02	change in direction	
Optics	real image= occurs where virtual image= rays only		
	rays converge	appear to diverge	
	Polarization= division into two	sharply distinct opposites	
Lenses	converging= both sides of the	lens curve outward it will	
	bend light from distant objects	s inwards toward a single	
	point, called the focal point		

Waves pt 2: 21 questions, 17% (copy) (cont)

convex=refract and converge

further from lens the bigger the object appears

diverging=both sides of the lens curve inward and light from distant objects will bend outwards.

concave=refract and diverge, always smaller

+ behind lens - in front of lens

more lenses, - the focal length

Mechanics: 4	44 questions, 35%
Newton's 1st	law of inertia. objects at rest remain at rest
Newton's 2nd	F=ma: the greater the mass the more force needed to accelerate
Newton's 3rd	every action has an equal and opposite reaction
Kepler's 1st	all planets move in an elliptical orbit around the sun
Kepler's 2nd	planets will move slowly far away from the sun, and faster closer to the sun
Kepler's 3rd	the square of the period of any planet is proportional to the cube of the axis of the orbit.
Friction	force that resists the sliding/rolling of a solid object over another
Bernoulli's principle	an increase in speed of a fluid simultaneously with a decrease in pressure or a decrease in the fluid's PE
Uniform circular motion	<i>centripetal</i> acceleration, net force is directed to the center

By Tischler (MsRTischler)

Published 4th April, 2024. Last updated 4th April, 2024. Page 2 of 4.

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Physics Praxis Cheat Sheet by Tischler (MsRTischler) via cheatography.com/202291/cs/42928/

increasing radius decreases forceF=m(v²/r)cos0Rotational motionmotion of an object around an axis. w=0/tHarmonic motion F = -kxHooke's law the force exerted by a spring is proportional to its lengthCollisionselastic- momentum conserved ex. pool balls move apartCollisionselastic- momentum not conserved ex. 2 cars stuck together, move togetherCentripetal forceincrease radius, decrease the force. F=m(v²/r)cos0Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementJD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailPascal's principleThe pressure at any point in the fluid is equal in all directions.Imodulusbu/k= reaction to squeezingModulusjoung= elasticity and lengthModulusishear= elasticity and stressPendulumsTime=2pi(square root (length/gravity))FendulumsTime=2pi(square not (length/gravity))	Mechanics: 44 qu	iestions, 35% (cont)
F=m(v²/r)cos0Rotational motionmotion of an object around an axis. w=0/tHarmonic motion F = -kxHooke's law the force exerted by a spring is proportional to its lengthCollisionselastic- momentum conserved ex. pool balls move apartCollisionselastic- momentum not conserved ex. 2 cars stuck together, move togetherCentripetal forceincrease radius, decrease the force. F=m(v²/r)cos0Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailprinciplethe reaction to squeezingmodulusbu/k= reaction to squeezingpoung= elasticity and length young= elasticity and stressPendulumsTime=2pi(square root (length/gravity))freq (displacement) = amplitude sin (ang freq * t)		increasing radius decreases force
Rotational motionmotion of an object around an axis. w=0/tHarmonic motion F = -kxHooke's law the force exerted by a spring is proportional to its lengthCollisionselastic- momentum conserved ex. pool balls move apartCollisionsinelastic- momentum not conserved ex. 2 cars stuck together, move togetherCentripetal forceincrease radius, decrease the force. F=m(v²/r)cos0Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailPascal's principleThe pressure at any point in the fluid is equal in all directions.modulusbu/k= reaction to squeezingbu/k= reaction to squeezingprodulusbu/k= reaction to squeezingprodulusfor elastic= ratio of stress to strain young= elasticity and lengthPendulumsTime=2pi(square root (length/gravity))freq (displacement) = amplitude sin (ang freq * t)		$F=m(v^2/r)cos0$
Harmonic motion F = -kxHooke's law the force exerted by a spring is proportional to its lengthCollisionselastic- momentum conserved ex. pool balls move apartinelastic- momentum not conserved ex. 2 cars stuck together, move togetherCentripetal forceincrease radius, decrease the force. F=m(v²/r)cos0Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailprinciplethe pressure at any point in the fluid is equal in all directions.modulusbulk= reaction to squeezingupung= elasticity and lengthyoung= elasticity and stressPendulumsTime=2pi(square root (length/gravity))freq (displacement) = amplitude sin (ang freq * t)	Rotational motion	motion of an object around an axis. <i>w=0/t</i>
Collisionselastic- momentum conserved ex. pool balls move apartInelastic- momentum not conserved ex. 2 cars stuck together, move togetherCentripetal forceincrease radius, decrease the force. F=m(v ² /r)cos0Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailPascal's principleThe pressure at any point in the fluid is equal in all directions.Incessure input = pressure outputbulk= reaction to squeezingIncessure input = pressure outputjoung= elasticity and lengthYoung= elasticity and stressshear= elasticity and stressPendulumsTime=2pi(square root (length/gravity))freq (displacement) = amplitude sin (ang freq * t)	Harmonic motion F = -kx	Hooke's law the force exerted by a spring is proportional to its length
inelastic- momentum not conserved ex. 2 cars stuck together, move togetherCentripetal forceincrease radius, decrease the force. F=m(v ² /r)cos0Bouyant force 	Collisions	<i>elastic</i> - momentum conserved ex. pool balls move apart
Centripetal forceincrease radius, decrease the force. F=m(v²/r)cos0Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailPascal's principleThe pressure at any point in the fluid is equal in all directions.modulusbu/k= reaction to squeezingModulusbu/k= reaction to squeezingPendulumsTime=2pi(square root (length/gravity))FendulumsTime=2pi(square noot (length/gravity))		<i>inelastic</i> - momentum not conserved ex. 2 cars stuck together, move together
Bouyant force F = -pgVthe upward force exerted on an object immersed in a fluidDisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailPascal's principleThe pressure at any point in the fluid is equal in all directions.Modulusbu/k= reaction to squeezingModulusbu/k= reaction to squeezingImage: pressure at any point in the fluid is equal in all directions.Modulusbu/k= reaction to squeezingImage: pressure at any point in the fluid is equal in all directions.Modulusbu/k= reaction to squeezingImage: plastic: principlestrainImage: plastic: principlestrainModulusjoung= elasticity and lengthImage: plastic:Bot plastic:Bot plastic: plastic: plastic: p	Centripetal force	increase radius, decrease the force. F=m(v ² /r)cos0
DisplacementD=VT=velocityXtimeVectorsadd or subtract by placing tip to tailPascal'sThe pressure at any point in the fluid is equal in all directions.principlefressure input = pressure outputmodulusbu/k= reaction to squeezingmodulusbu/k= reaction to squeezinggeastic= ratio of stress to strainyoung= elasticity and lengthshear= elasticity and stressPendulumsTime=2pi(square root (length/gravity))freq (displacement) = amplitude sin (ang freq * t)	Bouyant force F = -pgV	the upward force exerted on an object immersed in a fluid
Vectorsadd or subtract by placing tip to tailPascal'sThe pressure at any point in the fluid is equal in all directions.principlepressure input = pressure outputmodulusbulk= reaction to squeezingelastic= ratio of stress to strainyoung= elasticity and lengthshear= elasticity and stressPendulumsTime=2pi(square root (length/gravity))freq (displacement) = amplitude sin (ang freq * t)	Displacement	D=VT=velocityXtime
Pascal's principleThe pressure at any point in the fluid is equal in all directions.Pressure input = pressure outputmodulusbulk= reaction to squeezingmodulusleastic= ratio of stress to straingenerationgeneration to squeezingfeq (displacement) = amplitude sin (ang freq * t)	Vectors	add or subtract by placing tip to tail
pressure input = pressure output modulus bulk= reaction to squeezing elastic= ratio of stress to strain young= elasticity and length shear= elasticity and stress Pendulums Time=2pi(square root (length/gravity)) freq (displacement) = amplitude sin (ang freq * t)	Pascal's principle	The pressure at any point in the fluid is equal in all directions.
modulus bulk= reaction to squeezing elastic= ratio of stress to strain elastic= young= elasticity and length shear= elasticity and stress Pendulums Time=2pi(square root (length/gravity)) freq (displacement) = amplitude sin (ang freq * t)		pressure input = pressure output
elastic= ratio of stress to strain young= elasticity and length shear= elasticity and stress Pendulums Time=2pi(square root (length/gravity)) freq (displacement) = amplitude sin (ang freq * t)	modulus	<i>bulk</i> = reaction to squeezing
young= elasticity and length shear= elasticity and stress Pendulums Time=2pi(square root (length/gravity)) freq (displacement) = amplitude sin (ang freq * t)		elastic= ratio of stress to strain
shear= elasticity and stress Pendulums Time=2pi(square root (length/gravity)) freq (displacement) = amplitude sin (ang freq * t)		young= elasticity and length
Pendulums Time=2pi(square root (length/gravity)) freq (displacement) = amplitude sin (ang freq * t)		shear= elasticity and stress
freq (displacement) = amplitude sin (ang freq * t)	Pendulums	Time=2pi(square root (length/gravity))
		freq (displacement) = amplitude sin (ang freq * t)

Electricity & Magnetism: 26 questions, 21% (cont)		
Conductors	allows the movement of electrons and ions through. Ex. copper, gold, silver, steel, aluminium & brass	
	have moveable charges	
Insulators	don't allow electric current to pass through, electrical resistance. Ex. glass, plastic, rubber, air, & wood	
Ohm's law V = IR	the relationship between voltage, current & resistance in an electrical circuit.	
Biot-Savart law	describes the magnetic field generated by a constant electric current	
Lorentz force	combination of electric and magnetic force on a point charge due to electromagnetic fields. <i>to determine the</i> <i>direction of the magnetic force on a positive moving</i> <i>charge, point right thumb in the direction of the</i> <i>velocity (v), index finger in the direction of the</i> <i>magnetic field (B), and middle finger will point in the</i> <i>direction of the the resulting magnetic force</i>	

Electricity & Magnetism: 26 questions, 21%

Coulomb's	the force of attraction/repulsion between 2 charged
law F =	bodies is proportional to the product of their charges
k(q1q2)/r ²	and inversely proportional to the square of the distance
	between them

By Tischler (MsRTischler)

Published 4th April, 2024. Last updated 4th April, 2024. Page 3 of 4. Sponsored by Readable.com Measure your website readability! https://readable.com

Physics Praxis Cheat Sheet

Cheatography

by Tischler (MsRTischler) via cheatography.com/202291/cs/42928/

Electricity 8	Electricity & Magnetism: 26 questions, 21% (cont)		
Ampere's law	the sum of the length e in the direction of the le permeability times the	lements times the magnetic field ength element will be equal to the electric current.	
Lenz's Iaw	direction of the electric current induced in a conductor by a changing magnetic field, the magnetic field created by the induced current opposes changes in the initial magnetic field		
Kirchoff's laws	sum of all currents enter sum of all currents leav	ering a junction must equal the ring the junction	
Electric field	the electric force per unit charge		
Electric potential V = k(q/r)	amount of work energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field		
	the stronger the field= more potential		
I=V/R	V=IR	R=V/I	
Series	one path	Rt=R1+ R2+R3	
	It= I1 =I2	Vt = V1 + V2	
Parallel	many paths	1/Rt=1/R1+1/R2	
	lt = I1 + I2	Vt = V1 =V2	

Electricity & Magnetism: 26 questions, 21% (cont)	
	decrease resistance= decrease length, increase radius
	total resistance is less than individual
Gauss's Iaw	how much of something is INSIDE a completely closed surface by measuring how much is flowing out through the sides of that surface.
	the electric flux Φ across any closed surface is proportional to the net electric charge q enclosed by the surface
Magnetic field	F= qvB sin 0, where q is the magnitude of the charge, B is the magnitude of the magnetic field, v is the speed, and is the angle of the velocity with respect to the field. As increases from 0° to 90°, the force increases.

By Tischler (MsRTischler)

Published 4th April, 2024. Last updated 4th April, 2024. Page 4 of 4. Sponsored by Readable.com Measure your website readability! https://readable.com