Cheatography

Chem 55 Quantitative Analysis Midterm 1 Cheat Sheet by MSN006 via cheatography.com/211943/cs/46010/

Units							
Exa (E)	Peta (P)	Tera (T)	Giga (G)	Mega (M)	Kilo (k)	Hecto (h)	Deca (da)
^18	^15	^12	^9	^6	^3	^2	^1
Deci (d)	Centi (c)	Milli (m)	Micro (µ)	Nano (n)	Pico (p)	Femto (f)	Atto (a)
^-1	^-2	^_3	^-6	^_9	^-12	^-15	^-18

Sig Figs

Zeros before numbers are not significant. If there is a decimal, zeros after non-zeros are significant.

Multiplication, division: sig figs based on given value at beginning with least sig figs +/-: align decimal places and go based off least decimal places. eg: 25.0+1= 26 since 1 has no decimal place

log: for log(x), digits after decimal place= sig figs of x

multi step equation: sig figs based off of last math step you perform

formation constant

Formation Constant

• the reaction between an ion and ligands to form a complex ion is called a complex ion formation reaction

 $\operatorname{Ag}^{+}_{(aq)} + 2 \operatorname{NH}_{3(aq)} \Leftrightarrow \operatorname{Ag}(\operatorname{NH}_{3})_{2}^{+}_{(aq)}$

• the equilibrium constant for the formation reaction is called the formation constant, $K_{\rm f}$

 $K_f = \frac{[\text{Ag}(\text{NH}_3)_2^+]}{[\text{Ag}^+][\text{NH}_3]^2}$

3

uncertainty

absolute uncertainty= the plusminus value given

relative uncertainty= absolute uncertainty/ value it is given with

% relative uncertsinty: abs uncertainty/measured value *100

+/- problem: abs uncertainty= square root (each abs uncertainty squared then added) mult/divis: convert abs uncertainties to % relative uncertainties first , do same

squaring everything adding all sqrt , at the end undo % by remultiplying by measured value

sig figs

pН

ph+poh=14, ph=-log [h+] so 10^-pH = [H+], poh= -log [oh-] (all log10)

pKa= -log10Ka; HA (aq)⇒ [H+] (aq) + [A −] (aq); ka= [H+][A −]/[HA]

confidence interval

Cl= mean +/- ((t from table * stdev)/ sqrt n) (t table confidence%) confidence that the true value is x% away from avg

amino acid structure

t calc 2 sets of data

$$\begin{split} t_{calc} &= \frac{|\overline{x}_1 - \overline{x}_2|}{s_p} \sqrt{\frac{N_1 N_2}{N_1 + N_2}}\\ s_p^2 &= \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2} \end{split}$$
1. Compare standard deviations using the F-test

EDTA

 $M^{n++Y}m$ - = MY ^ (n-m) EDTA is Y

F calc

variance 1/variance2

Precision accuracy

Precision= stdev/mean x100

relative accuracy= (experimental mean-

known mean)/known mean x100,

accuracy= (experimental mean- known

mean)

if given avg and stdev. μ mean, stdev sigma. find range away from mean which will be Z then use table

nction®	Uncertainty ^b		
$= x_1 + x_2$	$e_y = \sqrt{e_{x_1}^2 + e_{x_2}^2}$		
$= x_1 - x_2$	$c_y = \sqrt{e_{x_1}^2 + e_{x_2}^2}$		
$= x_1 \cdot x_2$	$\% e_y = \sqrt{\% e_{x_1}^2 + \% e_{x_2}^2}$		
$=\frac{x_1}{x_2}$	$\% e_y = \sqrt{\% e_{x_1}^2 + \% e_{x_2}^2}$		
= x ⁰	$\% e_y = a(\% e_x)$		
$= \log x$	$e_y = \frac{1}{\ln 10} \frac{e_x}{x} \approx 0.434.29 \frac{e_x}{x}$		
$= \ln x$	$c_y = \frac{c_x}{x}$		
$= 10^{x}$	$\frac{e_y}{y} = (\ln 10) e_x \approx 2.302.6 e_x$		
e ^z	$\frac{e_y}{y} = e_x$		

stdev^2= variance. relative stdev= 100* s/mean. stdev of mean= s/ sqrt n. z= (x-µ)/sigma

Equilibrium

 $K = \frac{|\mathbf{C}|^c |\mathbf{D}|^d}{|\mathbf{A}|^s |\mathbf{B}|^b}$

Equilibrium

K>1=

Ksp, solubility in material= concentration of both products multiplied. $AB \Rightarrow [A+] + [B-]$, ksp= [a][b] eg: dissolve in solution that is z molarity of y reactant: corresponding concentration is x+z solid= always 1

С

By **MSN006**

cheatography.com/msn006/

Not published yet. Last updated 26th March, 2025. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com