\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{msingh25} \pdfinfo{ /Title (bio-130t.pdf) /Creator (Cheatography) /Author (msingh25) /Subject (BIO 130T Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{0549A3} \definecolor{LightBackground}{HTML}{EFF3F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{BIO 130T Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{msingh25} via \textcolor{DarkBackground}{\uline{cheatography.com/126395/cs/24442/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}msingh25 \\ \uline{cheatography.com/msingh25} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th September, 2020.\\ Updated 25th September, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{p{1.727 cm} x{15.543 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Scientific Method}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{17.67cm}}{{\bf{Steps of the Scientific Method }}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} & 1) Observation \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} & 2) Question \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} & 3) Hypothesis \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} & 4) Prediction \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} & 5) Experiment \tn % Row Count 6 (+ 1) % Row 6 \SetRowColor{LightBackground} & 6) Record and Analyze data \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{{\bf{ Types of Variables}}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Controlled Variable}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The variable that stays constant throughout the experiment} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Independent Variable }}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The variable that you are changing ( I-vary)} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Dependent Variable}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The variable that responds to the changes from the independent variable} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Negative Control Variable}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A control variable that does not result in any changes} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Positive Control Variable}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A control variable that results in a change} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Single Blind v.s Double Blind Experiment}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Single-Blind}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When the participants of the experiment do not know which group they are in\{\{nobreak\}\}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Double-Blind}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When both the researcher and the participants do not know which group they are in\{\{nobreak\}\}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Why is this important?}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}It helps eliminate bias in an experiment and help obtain honest results\{\{nobreak\}\}} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Prokaryotic Cell Structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601056096_95cd645b33b4a8883218ce52a0bfb5ade93f8d52.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Eukaryotic Cell Structure}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Image could not be loaded.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Plant Cell Structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601056280_vector-illustration-plant-cell-anatomy-structure-infographic-nucleus-mitochondria-endoplasmic-reticulum-golgi-159027793.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Phospholipids}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{A phospholipid has 2 parts:\{\{nl\}\} 1) {\bf{Polar region}} {\emph{(hydrophilic)}}\{\{nl\}\} 2) {\bf{Non-polar}} {\emph{(hydrophobic)}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Phospholipids form a bilayer in the membrane {\emph{(phospholipid bilayer)}}} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Passive transport}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} requires no energy\{\{nl\}\}-\textgreater{} Spontaneous movement of a substance across a membrane from an area {\bf{high concentration}} to an area of {\bf{low concentration}} {\emph{(spreading out)}}\{\{nl\}\} {\emph{ex: a ball rolls down a hill}}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} {\bf{Non-polar substances}} can dissolve through the non-polar lipid bilayer.\{\{nl\}\} -\textgreater{}{\emph{ (sex hormones, pesticides)}}\{\{nl\}\} -\textgreater{} {\bf{Small, unchanged molecules}}:\{\{nobreak\}\} {\emph{O2 \& the CO2}}} \tn % Row Count 9 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Active transport}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} {\bf{REQUIRES AN INPUT OF ENERGY}}\{\{nl\}\}-\textgreater{} The movement of a substance across a membrane from an area of {\bf{ low}} concentration to an area of {\bf{high}} concentration\{\{nl\}\} -\textgreater{} {\bf{LOWER CONCENTRATION TO HIGHER CONCENTRATION }}\{\{nl\}\} -\textgreater{}{\emph{ ex: we must work to roll the ball back uphill}}} \tn % Row Count 6 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.635 cm} x{8.635 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Active transport v.s Passive transport}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Active}} & {\bf{Passive}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Molecules {\bf{need energy}} to move across the membrane \{\{nl\}\} {\emph{ex: requires transport proteins}} & Molecules move spontaneously {\bf{(no imput of energy)}}\{\{nl\}\} {\emph{ex: Diffusion \& Osmoisis}} \tn % Row Count 6 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{What is excluded from passing the membrane?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Ions {\emph{(Ca2+, H+, Na+, Cl-)}}}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} even though they are small, their charges cause them to be repelled by the hydrophobic tails of te membrane\{\{nobreak\}\}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Large polar molecules}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{{\emph{(gluclose \& amino acids)}}}} cannot pass the hydrophilic tails of the membrane} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Transport membranes}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}help these molecules pass through the lipid bilayer\{\{nl\}\} -\textgreater{} {\bf{Facilitated Diffusion}}: is when the passive movement of a substance {\emph{with}} the help of membrane transport proteins: {\emph{channels}}\{\{nl\}\} {\emph{carriers}}} \tn % Row Count 13 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{8.9804 cm} x{8.2896 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Hydrophilic v.s Hydrophobic}} \tn % Row 0 \SetRowColor{LightBackground} Hydrophilic & Hydrophobic \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{ Attracts Water Molecules}}\{\{nobreak\}\} & {\bf{Repels Water Molecules}}\{\{nobreak\}\} \tn % Row Count 3 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{What is the monomer unit of a protein?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\emph{Answer}}: {\bf{ Amino Acids}}} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{What is the main component of the plasma membrane?}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601068018_0_Iuu2fCwgDM0se_Tc.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Membrane}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What charateristic makes a membrane semi-permeable \{\{nobreak\}\}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Substances move in \& out of the cell through proteins or btwn phospholipids \{\{nobreak\}\}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Characteristics of All Living things}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{1) Are made up of 1 or more cells} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{2) Can reproduce using DNA} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{3) Obtain energy from the environment around them} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{4) Able to grow \& develop} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{5) able to evolve as a group} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Prokaryotic v.s Eukaryotic}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Prokaryotic(Unicellular)}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The entire organism is made up of one cell\{\{nl\}\} This cell carries out all the functions for survival\{\{nl\}\}{\emph{ex: Bacteria \& Archea}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Eukaryotic(Multicellualr)}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Are composed of many specialized cells working together \{\{nl\}\} {\emph{ex: small plants and animals}}} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Prokaryotic v.s Eukaryotic}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601045488_Prokaryotesvseukaryotes.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{DNA v.s RNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{DNA}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} deoxyribosose nucleic acid\{\{nl\}\}-\textgreater{} gene carry an ATCG code \{\{nl\}\}-\textgreater{} are the blueprint for protein molecules} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{RNA}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} ribonucleic acid\{\{nl\}\}-\textgreater{} acts as a messenger carrying out orders from the DNA\{\{nl\}\}-\textgreater{} controls synthesis of protein\{\{nl\}\}-\textgreater{} The genetic code is AGCT} \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{DNA v.s RNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601046436_1200px-Difference_DNA_RNA-EN.svg.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Macromolecules comparison}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601055871_download.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Size Ranges of Biological Structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601056002_cell-structure-and-function-part-01-3-638.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Cell Structures; to real life ex}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Nucleus}} = Town Hall ( controls the cell) \{\{nl\}\} \{\{nobreak\}\} {\bf{Golgi}} = USPS/ UPS (packages and delivers \{\{nl\}\}{\bf{ ER}}= Factories (make lipids/ Proteins \{\{nl\}\}{\bf{ Ribosomes }}= Factory workers (makes lipids proteins) \{\{nl\}\} {\bf{ Chloroplast}}= Solar Panel ( Captures light)\{\{nl\}\} {\bf{ Mitochondria}} = Power House ( Convert Energy) \{\{nl\}\}{\bf{ Lysosomes}} = break down bacteria and worn out (sanitation) \{\{nl\}\}{\bf{ Vacuoles }}= Break down bacteria etc.and store energy (sanitation) \{\{nl\}\}{\bf{ Cell membrane }}= to regulate what gets in and out of the cell (Bouncer ) \{\{nl\}\}{\bf{ Cytoskeleton }}= structures and movement of chromosomes (infrastructure of town/ highway) \{\{nl\}\}{\bf{ Cytoplasm}} = holds all the organelles together \& cellular respiration (air) \{\{nl\}\}{\bf{ Vesicles}} = storage and move things around move proteins out of the cell ( mailman/ mail truck)} \tn % Row Count 18 (+ 18) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Diffusion}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} {\bf{Diffusion}}= substances moving spontaneously \{\{nl\}\}-\textgreater{} Diffusion stops when the substance is equally distributed -\{\{nobreak\}\}{\bf{Equilibrium}}\{\{nl\}\} -\textgreater{} There is no net movement of molecules, even though the molecules are still moving\{\{nl\}\} -\textgreater{} They are moving in a space at the same rate as they are leaving the space} \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{What factors can affect the rate of diffusion?}}\{\{nl\}\}-\textgreater{} {\bf{Temperature}}({\emph{heat/cold}}): Heat causes particles to move faster \{\{nl\}\}Cold slows down the movement of particles\{\{nl\}\}-\textgreater{}{\bf{ Size of particles}}: Small molecules will move faster than the large ones} \tn % Row Count 13 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Osmosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} is the movement of water across a selectively permeable membrane\{\{nl\}\} -\textgreater{} Through polar, water molecules are small enough to weave through the lipid bilayer \{\{nl\}\} -\textgreater{} If a large amount of water is needed, the movement is done through a protein channel {\bf{{\emph{-Aquaporin\{\{nobreak\}\}}}}}} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} The diffusion of water across the membrane is {\bf{PASSIVE}}\{\{nl\}\} -\textgreater{} {\bf{NO INPUT OF ENERGY IS REQUIRED}}\{\{nl\}\}-\textgreater{} Water moves from an area of {\bf{high}} concentration to an area of {\bf{low}} concentreation\{\{nl\}\} -\textgreater{} Water moves from areas of {\bf{ low solute}} {\emph{(salt,sugar)}} to {\bf{high solute}}} \tn % Row Count 12 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Solution types}} \tn \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{Image could not be loaded.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Isotonic}} = having the same/equal \newline {\bf{ Hypotonic}} = having a lower concentration of solute than the other solution\{ \newline {\bf{ Hypertonic}} = having higher osmotic pressure than the comparison solution} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Solution differences}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601064516_hypo.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Intracellular v.s Extracellular}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Intracellular}}: located {\bf{Inside}} of the cell} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Extracellular}}: located {\bf{outside}} of the cell\{\{nobreak\}\}} \tn % Row Count 3 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Producers v.s Consumers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Producer}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Plants obtain energy from the non-living part of the environment\{\{nobreak\}\} \{\{nl\}\}-\textgreater{} Autotrophs = Producers} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Consumer}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Animals obtain energy from the living part of the environment\{\{nobreak\}\}\{\{nl\}\} Hetrotrophs =Consumers} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Linnean Hierarchy of Classification}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601046931_images.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ 8 category system}} \newline {\bf{ Top to bottom = Least specific to most}} \newline {\bf{ Bottom to the top = Most specific to least}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Biological Organization}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601045761_Organization-life_img1.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{4 Biological Molecules}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{1){\bf{ Proteins}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{2){\bf{ Lipids}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{3){\bf{ Carbohydrates}}} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{4){\bf{ Nucleic Acids}}} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Monomer v.s Polymer}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Monomer}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} is any molecule that contains atleast 1 {\bf{C-H}} bond \{\{nobreak\}\}\{\{nl\}\}-\textgreater{}{\emph{Small Building Blocks}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Polymer}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} are small organic molecules that are used as repeating links together via covalent bonds to form a macromolecule (polymers)} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Dehydration Reaction v.s Hydrolysis Reaction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Dehydration Reaction}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} connects a monomer to another monomer or a polymer \{\{nl\}\} -\textgreater{} In a dehydration reaction the 2 \seqsplit{reactants(monomer/polymer)} contributes a part of the water molecule released in the reaction\{\{nobreak\}\}\{\{nl\}\} -\textgreater{} {\emph{ one contributes the {\bf{-OH}}(hydroxyl group)}} \& the other {\bf{H}} {\emph{(Hydrogen)}}\{\{nl\}\} -\textgreater{} Continuous reaction} \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Hydrolysis}}} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} breaks down polymers into monomers\{\{nl\}\} The bond btwn the monomers attaching to one monomer and the hydroxyl attaching to the other monomer\{\{nl\}\}} \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{The Order of Making Protein}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ DNA -\textgreater{} RNA -\textgreater{} Protein}}} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{The Plasma Membrane}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Forms the external boundary of all types of cells \{\{nl\}\} -\textgreater{} Seperates the inside contents of the cell from the outside \{\{nl\}\} -\textgreater{} Controls communication and exchange of some materials} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Is {\bf{Selectively Permeable}}\{\{nl\}\} the membrane regulates the passage of materials \{\{nl\}\}-\textgreater{} Membrane allows some substances to pass through, more easily than others.\{\{nl\}\} -\textgreater{} Some molecules can enter and exit the cell freely \{\{nl\}\} Some molecules can pass under some circumstances\{\{nl\}\} -\textgreater{} Others have some trouble} \tn % Row Count 11 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Functions of a Plasma Membrane}}:\{\{nl\}\}-\textgreater{} They keep toxic substances out of the cell\{\{nl\}\}-\textgreater{} They contain receptors and channels that allow molecules {\emph{such as ions, nutrients, waste, and metabolic product}}\{\{nobreak\}\} \{\{nl\}\} -\textgreater{} Regulates the {\bf{transport}} of substances in and out of the cell\{\{nl\}\}-\textgreater{} Protects the cell by acting as a barrier} \tn % Row Count 18 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Cells}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601057853_cells-animal-plant-ways-nucleus-difference-organelles.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{3.1293 cm} x{4.4469 cm} x{4.4469 cm} x{4.4469 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{4 Macromolecules Functions \& Examples \{\{nobreak\}\}}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Macromolecules}}\{\{nobreak\}\} & {\bf{Building Blocks}}\{\{nobreak\}\} & {\bf{ Functions}}\{\{nobreak\}\} & {\bf{Examples}}\{\{nobreak\}\} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} {\bf{Lipids}} & Fatty acids \& glycerol & to provide cells with long-term energy \& make-up \seqsplit{biological} membranes\{\{nobreak\}\} & {\emph{Fats, \seqsplit{Phospholipids}, waxes, oils, grease, steroids\{\{nobreak\}\}}} \tn % Row Count 13 (+ 8) % Row 2 \SetRowColor{LightBackground} {\bf{ \seqsplit{Nucleic} acids}} & \seqsplit{Nucleotides} & to store and pass on genetic info & {\emph{ DNA \& RNA}} \tn % Row Count 17 (+ 4) % Row 3 \SetRowColor{white} {\bf{ Carbohydrates}} & \seqsplit{Monosaccharides} {\emph{(simple sugars)}}\{\{nobreak\}\} & to provide cells with short term energy \& source of fiber\{\{nobreak\}\} & {\emph{Glucose, Sucrose, Starch, Cellulose, Chtin\{\{nobreak\}\}}} \tn % Row Count 24 (+ 7) % Row 4 \SetRowColor{LightBackground} {\bf{ Proteins}} & Amino Acids & to provide cell structure, send chemical signals, speed up chemical reactions, \& more\{\{nobreak\}\} & {\emph{ Keratain}}(found in hair \& nails){\emph{, Hormones, Enzymes, \seqsplit{Antibodies} \{\{nobreak\}\}}} \tn % Row Count 34 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{7.0807 cm} x{10.1893 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Active Transport \& Channels}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{ Ion Channels}}\{\{nobreak\}\} & Intergral pores that allow specific ions to get in/out of the cell\{\{nobreak\}\} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Transporters}} & Integral proteins that selectively move a polar substance/ion to one side of the membrane\{\{nobreak\}\} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Receptors}} & Integral proteins that serve as recognition sites. Each binds to a specific type of molecule \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} {\bf{Ligand}} & A specific molecule that binds to a receptor \tn % Row Count 15 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{ Enzymes}} & Intergral proteins that catalyze specific chemical reactions at the cell surface \tn % Row Count 19 (+ 4) % Row 5 \SetRowColor{white} {\bf{Linkers}} & Intergral proteins that hold down proteins in the plasma membrane. Helps form structure of cells and link cells together \tn % Row Count 25 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Regulators}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Local Regulators}}: a secreted molecule that influences cells near where it was secreted \{\{nobreak\}\}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{ G-protein-coupled receptors}}: a signal receptor protein that responds to the binding of a signal molecule by activating a G-protein\{\{nobreak\}\}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Ion Channel receptors}}: a ligand-gated ion channel is a type of membrane receptor containing a region that can act as a "gate" when the receptor changes shape\{\{nobreak\}\}} \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{3.9528 cm} x{4.4469 cm} x{3.6234 cm} x{4.4469 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Local v.s Long Distance(animal cells\{\{nobreak\}\})}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Local}} & {\bf{Both}} & {\bf{ Long}} & \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & target only specific target cells\{\{nobreak\}\} recognize \& respond to a given signal molecule & & \tn % Row Count 12 (+ 10) % Row 2 \SetRowColor{LightBackground} {\bf{ \seqsplit{Panacrine} Signaling}}\{\{nobreak\}\} & A secreting cell acts on nearby target cells by \seqsplit{discharging} molecules of a local regulator into \seqsplit{extracellular} fluid\{\{nobreak\}\} & & \tn % Row Count 25 (+ 13) % Row 3 \SetRowColor{white} {\bf{ Synaptic Signaling}} & A nerve cell releases \seqsplit{nuerotransmitter} molecules into a synapse \seqsplit{stimulating} the target cell & & \tn % Row Count 35 (+ 10) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{3.9528 cm} x{4.4469 cm} x{3.6234 cm} x{4.4469 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Local v.s Long Distance(animal cells\{\{nobreak\}\}) (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & & {\bf{Hormonal Signaling}}\{\{nobreak\}\} & \seqsplit{Specialized} endocrine cells secrete hormones into body fluids, {\emph{often blood}} Hormones may reach virtually all body cells \{\{nobreak\}\} \tn % Row Count 14 (+ 14) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Signal Transduction Pathway}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{A series of steps linking a mechanical/chemical stimulus to a specific cellular response\{\{nobreak\}\}} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{key role in cell communication\{\{nobreak\}\}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\emph{Answer}}: The plasma membrane plays a key role in communication btwn cells \& their environment \{\{nobreak\}\}} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{mono v.s di v.s poly (saccharides)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601053797_Difference-Between-Monosaccharides-Disaccharides-and-Polysaccharides-Comparison-Summary.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Amino Acid Monomers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} are organic molecules with carboxyl and an amino acid group} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} at the center of the small molecules is the carbon atom called "{\bf{ Alpha Carbon}}"} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} surrounded by amino group, carboxyl group, a hydrogen group with a "{\bf{-R}}" group} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Amino Acid Structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601054121_Pj2xAnIFTBuxwKWYL0Y6_aminoAcidStruc.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{20 amino acids}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{17.67cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/msingh25_1601054195_amino-acid-structures_med.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Protein Structure \& Function}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} A functional protein consists of 1 or more polypeptides} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{3 Levels of Structure:\{\{nl\}\} 1) Primary Structure\{\{nl\}\} 2) Secondary Structure\{\{nl\}\} 3) Teritary Structure\{\{nl\}\} 4) Quaternary Structure} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Primary Structure}}: is the proteins linear sequence\{\{nl\}\}{\bf{ Secondary Structure}}: is when polypeptide chains coil or fold to the backbone of the polypeptide interact and form bonds\{\{nl\}\} {\bf{Teritiary Structure}}: happens through the interactions of the amino acids. Determines the overall shape of the polypeptide\{\{nl\}\} {\bf{Quaternary Structure}}: is when 2 or more polypeptides combine (aggregate)} \tn % Row Count 13 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Endomembrane System}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Nuclear Envelope} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Endoplasmic Reticulum} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Golgi Body} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Lysosomes} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Plasma Membranes} \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{-\textgreater{} Vacuoles} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Plasma membrane}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{What macromolecule makes up the majority of the plasma membrane of cells?} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A) Proteins\{\{nl\}\} B) Carbohydrates\{\{nl\}\}{\bf{ C)}} {\bf{Lipids}} -{}-\textgreater{}\textgreater{} {\bf{Phospholipids}} \{\{nl\}\} D) Nucleic Acids} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{} \tn \mymulticolumn{1}{x{17.67cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Proteins and carbohydrates also compose the membrane} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Amphipathic}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{having both hydrophillic \& hydrophobic parts\{\{nobreak\}\}} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Concentration Gradient}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{oocurs when the concentration of particle in one area than another.\{\{nobreak\}\}s is higher} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Permeable}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{allowing cells/ions to pass through} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Turgid}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{Swollen or congested} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{17.67cm}}{\bf\textcolor{white}{Solution vocab}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{Solvent}}: able to dissolve other solutions \{\{nobreak\}\}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{17.67cm}}{{\bf{Solution}}: a homogenous {\emph{(balanced)}} mixture of solvent or solute molecules \{\{nobreak\}\}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{17.67cm}}{{\bf{ Solute}}: is a substance that can be dissolved by a solvent to create a solution\{\{nobreak\}\}} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \end{document}