\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{msingh25} \pdfinfo{ /Title (bio-130-exam-2.pdf) /Creator (Cheatography) /Author (msingh25) /Subject (BIO 130 Exam 2 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A80722} \definecolor{LightBackground}{HTML}{F9EFF1} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{BIO 130 Exam 2 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{msingh25} via \textcolor{DarkBackground}{\uline{cheatography.com/126395/cs/24918/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}msingh25 \\ \uline{cheatography.com/msingh25} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th October, 2020.\\ Updated 25th October, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{How is Energy defined?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Energy is something you need to do work} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Law of Thermodynamics}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{1st Law of Thermodynamics}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Energy can be transferred or transformed but neither created nor destroyed} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{2nd Law of Thermodynamic}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Each energy transfer or transformation increases the disorder} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{ATP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{What is ATP?}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Adenosine Triphosphate} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{What kind of molecule is ATP?}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP is an energy storing molecule\{\{nl\}\} {\emph{Called the Cell's Energy Currency}}\{\{nl\}\} {\emph{Cells get energy from ATP}}} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{What is ATP made of ?}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP is made out of adenine{\emph{ (nitogen base)}}\{\{nobreak\}\}, ribose (sugar), and phosphate groups} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{What happens when the bond breaks to the ATP?}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP loses 1 phosphate group\{\{nl\}\}{\emph{When it loses a phosphate group it turns into adenosine "Di" phosphate}}} \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stages of Cellular Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 1st- Glycolosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Location: Cytoplasm\{\{nl\}\} Splitting sugars in cytoplasm energy investment phase -\textgreater{} 2 ATP molecules combine with glucose molecule} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 2nd- Oxidation}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Location:Inner membrane and inner membrane space of the mitochondria\{\{nl\}\} Pyruvates move into the mitochondria through oxidation. pyruvates brolen into water} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 3rd- Krebs Cycle}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Location:Matrix For every glucose, the cycle repeats 2x. The breakdown of pyruvic molecules -{}-\textgreater{} carbon dioxide releases 2 ATPs in this stage} \tn % Row Count 14 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 4th -Electron Transport Chain}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Location: Inner membrane\{\{nl\}\}Membrane bound carriers that transport electrons, produces 32 ATP's} \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Where does it occur?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Photosynthesis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Chloroplast} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cellular Respiration}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Mitochondria} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{ATP vs ADP}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{ATP}} & {\bf{ADP}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{Adenosine Triphosphate }} & {\bf{Adenosine Diphosphate}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{ATP is a nucleotide found in cells}} & {\bf{ ADP is a nucleotide which has a low amount of energy}} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} {\bf{ Made of 1 adenine, 1 ribose, and 3 phosphates}} & {\bf{Made out of 1 adenine, 1 ribose, and 2 phosphates}} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} & {\bf{ ADP is formed when ATP LOSES a phosphate}} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Anabolic or Catabolic Pathway\{\{nobreak\}\}}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Photosynthesis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Photosynthesis is an {\bf{Anabolic Pathway}}\{\{nobreak\}\} because light energy from the sun is converted into glucose\{\{nl\}\}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cellular Respiration}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cellular Respiration is {\bf{Catabolic Pathway }} because organic molecules are broken down to release energy} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oxidation Reduction Reactions Vocab}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oxidation}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A reaction that {\bf{REMOVES}} 1 or more electrons from a substance} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Reduction}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A reaction where electrons are {\bf{GAINED}} by either removing oxygen, adding hydrogen, or the addition of electrons} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oxidized}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When a molecule has {\bf{LOST}} Electrons and that has increase its oxidation \#} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Reduced}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}When a molecule has {\bf{GAINED}} electrons by losing an oxygen or gaining a hydrogen atom} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oxidation-Reduction Reaction}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Any chemical change where 1 molecule {\bf{LOSES}} electrons and the other molecule {\bf{GAINS}} electrons} \tn % Row Count 17 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Redox Reaction}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Any chemical change where 1 molecule becomes {\bf{OXIDIZED}} {\emph{loses electrons\{\{nobreak\}\} and the other molecule is {\bf{REDUCED}} gains electrons}}} \tn % Row Count 21 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oxidizing Agent}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The molecule that {\bf{GAINS}} electrons in an oxidation-reduction reaction and is reduced} \tn % Row Count 24 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Reducing Agent}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The molecule that has a potential to reduce another molecule} \tn % Row Count 27 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Anode}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Where Oxidation takes place} \tn % Row Count 29 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cathode}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Where Reduction takes place} \tn % Row Count 31 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{How many chromosomes do humans have?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{46 or 23 pairs }}} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stages of The Cell Cycle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{1st: Interphase}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}This is the {\bf{1st}} stage of the cell cycle and occurs {\bf{before}} mitosis.\{\{nl\}\} During this phase the cell {\bf{GROWS}} makes a {\bf{copy of it DNA}} {\emph{(the chromosomes are copied)}} and prepares to divide into 2 cells\{\{nl\}\} The 2 structures that are being copied are cylinder shape and are called centrioles} \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 2nd:Prophase}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{This is the 1st phase of Mitosis}}\{\{nl\}\} During this phase the {\bf{centrioles start to move to the opposite ends of the cell}} The spindle fibers start to form a bridge to connect the cells} \tn % Row Count 14 (+ 6) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 3rd:Metaphase}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{This is the 2nd phase of Mitosis}}\{\{nl\}\} During this phase, {\bf{the chromosomes all line up down the middle of the cell}}\{\{nl\}\}{\emph{(The nucleus has now disappeared)}}} \tn % Row Count 19 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 4th: Anaphase}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{This is the 3rd phase of Mitosis}}\{\{nl\}\} During this phase {\bf{the chromosomes pull apart from each other and move to the opposite sides of the cell}} \{\{nl\}\} Thos process is caused by the split of the centromere of each chromosomes. These chromosomes have been pulled by spindle fibers, which has subsequently caused the cekk to stretch out} \tn % Row Count 28 (+ 9) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 5th: Telophase}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{This is the 4th and Final Stage of Mitosis}}\{\{nl\}\} During this phase {\bf{new nuclear membranes form}} \{\{nl\}\} a new nuclear envelope has also formed and the spindle fibers have disappeared. There are now 2 new nuclei} \tn % Row Count 34 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stages of The Cell Cycle (cont)}} \tn % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ 6th: Cytokinesis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{This is the Final Stage of the Cell Cycle}}\{\{nl\}\} {\emph{(This phase occurs with Telophase)}}\{\{nl\}\} This phase results in the cell spliting into 2 identical daughter cells. The 2 daughter cells both contain the same chromosome set and about half the organelles of the parents\{\{nl\}\} {\bf{There are differences in this phase of the animal cell \& plant cells}}\{\{nl\}\} {\bf{Animal cells:}} The cell membranes squeezes together around the middle of the cell. The cytoplasm pinched into 2 cells. each daughter cell recieves about half the organelles of the parent cell\{\{nl\}\}{\bf{Plant Cells:}} A plant cell's rigid cell wall cannot squeeze together in the same way a cell membrane can} \tn % Row Count 16 (+ 16) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Potential Energy vs Kinetic Energy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Potential Energy}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Energy an object has due to its position or structure} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Kinetic Energy}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Energy an object has due to its motion} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Metabolism}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Metabolism}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}All the chemical reactions in a cell} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Catabolism}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}All the reactionns that break {\bf{LARGE}} molecules into {\bf{SMALLER}} ones \{\{nl\}\}Energy is {\bf{Transferred}} from food to a stored cellular form (downhill reactions))} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Anabolism}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}All the reactions that build {\bf{LARGE}} molecules from {\bf{SMALLER}} ones\{\{nl\}\} Energy is {\bf{Required}} to build the molecule (uphill reactions)} \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Competitive Inhibition Vs Non}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Competitive Inhibition}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The inhibitor copies the substrate and competes for the activation site of the enzyme} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Non-Competitive Inhibition}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The inhibitor binds to another area on the enzyme, alters the shaoe of the enzyme and prevents the active site from functioning} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{How do Cells Regulate Enzymes?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Regulation:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} The regulation of an enzyme may help to regulate metabolism\{\{nl\}\}-\textgreater{} Turns off the genes that regulate enzyme activity\{\{nl\}\}Regulate the enzyme activity once it is made} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Allosteric Regulation}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} mimics non-competitive inhibition\{\{nl\}\}-\textgreater{} Enzyme function at one site is affected by the binding of a regulatory molecule at another site.} \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{2 Possible ways of Allosteric Inhibitor}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1) Inhibitor binds to the allosteric site, blocks the active site and changes the shape of the entire enzyme\{\{nl\}\} 2) Inhibitor bind to the allosteric site and changes the shape of the active site} \tn % Row Count 16 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cellular Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{What is the reaction {\emph{(starting materials and products)}} for Cellular Respiration?}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Glycolysis}}\{\{nl\}\} {\bf{{\emph{Reactants}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Glucose\{\{nl\}\}2 ATP molecules\{\{nl\}\}2 NAD+} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Glycolysis}} \{\{nl\}\}{\bf{{\emph{Products}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}2 Pyruvic Acid\{\{nl\}\} 2 ATP \{\{nl\}\} 2 NADH} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Citric Acid / Krebs Cycle}}\{\{nl\}\}{\bf{{\emph{Reactants}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}2 Pyruvic Acid {\emph{(produced by Glycolysis)}}} \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Citric Acid / Krebs Cycle}}\{\{nl\}\}{\bf{{\emph{Products}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}2 ATP\{\{nl\}\} 4 CO2\{\{nl\}\} NADH and FADH2} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electron Transport Chain}}\{\{nl\}\}{\bf{{\emph{Reactants}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Oxygen and Energy Carriers\{\{nl\}\}{\emph{(produced by Glycolysis and the Citric Cycle)}}} \tn % Row Count 14 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electron Transport Chain}}\{\{nl\}\}{\bf{{\emph{Products}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}32 ATP} \tn % Row Count 16 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Light-Dependent Reactions}}\{\{nl\}\} {\bf{{\emph{Reactants}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Light\{\{nl\}\} Water} \tn % Row Count 19 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Light-Dependent Reactions}}\{\{nl\}\} {\bf{{\emph{Products}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP\{\{nl\}\} NADPH\{\{nl\}\} Oxygen} \tn % Row Count 21 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Calvin Cycle}}\{\{nl\}\}{\bf{{\emph{Reactants}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}6 CO2\{\{nl\}\} 6 ATP\{\{nl\}\} 6 NADPH} \tn % Row Count 23 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Calvin Cycle}}\{\{nl\}\}{\bf{{\emph{Products}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Glucose} \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{How is ATP Created?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Photosynthesis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP is made in light-dependent reactions through ATP synthase, chemiosmosis} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cellular Respiration}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}ATP is made in chemiosmoisis} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Formulas}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Balanced Chemical Photosynthesis}}\{\{nobreak\}\}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}6 H2O + 6CO2 -{}- Sunlight-{}- C6 H12 O6 +6 O2} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Balanced Chemical Cellular Respiration}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}6 O2+ C6 H12 O6-{}-Sunlight-{}- 6H2O + 6CO2 + ATP Energy} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Cell Cycle \& Mitosis Vocab}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Heredity}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The passing of traits from parents to offspring} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Gene}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A segment of DNA on a chromosome that codes a specific trait} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Allele}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The different forms/variations of a gene} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Fertilization}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The process where the egg and sperm cell join to form an offspring} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Chromosome}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}DNA condensed into a transportable form after it has replicated; since DNA is replicated, each chromosome contains 2 identical copies} \tn % Row Count 14 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Chromatin}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Uncoiled strand of DNA wrapped around proteins called histones} \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Sister Chromatid}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Identical copies of DNA attached to each other by the centromere} \tn % Row Count 20 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Homologous Chromosomes}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A pair of chromosomes where 2 chromosomes are the same sixe and shape and they contain the same genes with each parent contributing 1 chromosome in each pair} \tn % Row Count 25 (+ 5) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Centromere}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Area where the chromatids of a chromosome are attached} \tn % Row Count 28 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.00694 cm} x{1.78503 cm} x{1.78503 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Mitosis vs Meiosis}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Mitosis}}\{\{nobreak\}\} & {\bf{1) Crossing Over}}\{\{nl\}\}{\bf{2) Pairing of Homologues}}\{\{nl\}\}{\bf{3) Number of Divisions}}\{\{nl\}\}{\bf{4) Number of Haploid Daughter Cells}}\{\{nl\}\}{\bf{5)Chromosome Number}} & \{\{fa-ban\}\}\{\{nl\}\}\{\{fa-ban\}\}\{\{nl\}\}{\bf{1}}\{\{nl\}\}\{\{fa-ban\}\}\{\{nl\}\} {\bf{{\emph{Stays the same}}}} \tn % Row Count 11 (+ 11) % Row 1 \SetRowColor{white} {\bf{Meiosis}}\{\{nobreak\}\} & {\bf{1) Crossing Over}}\{\{nl\}\} {\bf{2) Pairing of Homologues}}\{\{nl\}\}{\bf{3) Number of Divisions}}\{\{nl\}\}{\bf{4) Number of Haploid Daughter Cells}}\{\{nl\}\}{\bf{5)Chromosome Number}} & \{\{fa-check-square-o\}\}\{\{nl\}\}\{\{fa-check-square-o\}\}\{\{nl\}\}{\bf{2}}\{\{nl\}\}{\bf{4}}\{\{nl\}\}{\bf{1/2}} \tn % Row Count 22 (+ 11) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Steps of Mitosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Interphase}}\{\{nl\}\}{\bf{Prophase }}\{\{nl\}\}{\bf{Metaphase }}\{\{nl\}\}{\bf{Anaphase }}\{\{nl\}\}{\bf{Telophase }}\{\{nl\}\}{\bf{Cytokinesis}}} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Free Energy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Free Energy}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the amount of the systems energy that can do work when temperature and pressure are uniform throughout} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Exergonic Reactions}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A {\bf{Release}} of free energy and is {\bf{Spontaneous}}\{\{nl\}\} {\emph{G is negative}}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Endergonic Reaction}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Absorbs}} free energy from its surroundings and is {\bf{Non-spontaneous}}\{\{nl\}\} {\emph{G is positive}}} \tn % Row Count 10 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Enzymes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Properties of an Enzyme:}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Recyclable\{\{nl\}\} Are able to maintain their structures\{\{nl\}\}Specific to a substrate\{\{nl\}\} Lower Activation Energy} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{What type of macromolecules are enzymes?}}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Enzymes are {\bf{protein}} macromolecules that act as catalysts} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{...}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electron Transport Chain}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} 1st part of stage 3\{\{nl\}\}-\textgreater{} Location: inner membrane\{\{nl\}\} NADH and FADH2 are moved across the ETC to oxygen, the final electron acceptor. Proteins in ETC use energy from released electrons to shuttle H+ against the concentration gradient into the inner membrane space} \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Chemosmosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}-\textgreater{} Location: Inner membrane space, Inner membrane, Matrix\{\{nl\}\} -\textgreater{} Energy from H+ concentration in inner membrane space drives H+ through ATP synthase, which activates catalytic sites that attach a phosphate group to ADP to form ATP} \tn % Row Count 13 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{What is the purpose?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Photosynthesis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}To make food {\emph{(Glucose)}} for a Plant Cell} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cellular Respiration}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}To release usable energy to power a cell} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{What is needed?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Reactants for Photosynthesis}}\{\{nobreak\}\}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Light Energy\{\{nl\}\}Carbon Dioxide {\emph{(C02)}}\{\{nl\}\} Water {\emph{(H20)}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Products for Photosynthesis}}\{\{nobreak\}\}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Glucose {\emph{(C6 H12 O6)}}\{\{nl\}\}Oxygen {\emph{(O2)}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Reactants for Cellular Respirations}}\{\{nobreak\}\}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Gluclose {\emph{(C6 H12 O6)}}\{\{nl\}\}Oxygen {\emph{(O2)}}} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Products for Photosynthesis}}\{\{nobreak\}\}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Usable Chemical Energy\{\{nl\}\}Carbon Dioxide {\emph{(CO2)}}\{\{nl\}\} Water {\emph{(H2O)}}} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{What is?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Substrate-level Phosphorylation}}\{\{nobreak\}\}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}In this process a phosphate group from a substrate molecule directly to ADP, forming ATP} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Oxidative Phosphorylation}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Final Stage in cellular respiration which the energy stored in electron carrier molecules is used to generate ATP} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Can Cellular Respiration aerobic or anaerobic?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Aerobic because it require oxygen} \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fate of Pyruvate}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Aerobic Conditions}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Pyruvate -\textgreater{} acetyl-coA -\textgreater{} Citric Acid Cycle} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Anarobic Conditions}}\{\{nl\}\}{\bf{{\emph{Eukaryotic Cell}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Pyruvate -\textgreater{} Lactate/Lactic Acid} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Anarobic Conditions}}\{\{nl\}\}{\bf{{\emph{Prokaryotic Cell}}}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Pyruvate -\textgreater{} Acetaldehyde -\textgreater{} Ethanol} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Photosystems}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Photosystems:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}An organized complex of chlorophyll,other pigments and proteins that rap light energy as exicted electrons\{\{nl\}\} Plants have 2 linked photosystems in the thylakoid membrane of chloroplasts\{\{nl\}\}Photosystem II passes an excited electron transport chain to Photosystem I to replace an exicted electron passed to NADPH. The electron lost from Photosystem II is replaced by the oxidation of water.} \tn % Row Count 10 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Photosynthesis \& Cellular Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{How are Photosynthesis + Cellular Respiration related?}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Photosynthesis removes CO2 from the atmosphere and Cellular Respiration puts it back. Photosynthesis releases oxygen into the atmosphere and Cellular Respiration uses that oxygen to release energy from food.} \tn % Row Count 7 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Mitosis vs Meiosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Mitosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A process of {\bf{Asexual Reproduction}} where the cell divides into 2 producing a replica with identical number of chromosomes in a haploid cell} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Meiosis }}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A type of cellular respiration where the number of chromosomes are reduced by half through the separation of homologous chromosomes in a diploid cell} \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Function of Mitosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Asexual Reproduction} \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Function of Meiosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Sexual Reproduction} \tn % Row Count 14 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Mitosis occurs in:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{All}} Organisms} \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Meiosis occurs in:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Humans, Animals, Plants, Fungi} \tn % Row Count 18 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Mitosis is Genetically}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Identical} \tn % Row Count 20 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ Meiosis is Genetically }}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Different {\emph{(Genetic Variance)}}} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Which phase of the cell cycle does DNA replicate?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Interphase\{\{nl\}\} DNA replicates during interphase. This provides each new daughter cell with a complete nucleus} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3 ways variability is achieved}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{1) Crossing Over \& Recombination}}\{\{nl\}\}{\bf{2) Independent Segregation of Homologous Chromosomes}}\{\{nl\}\}{\bf{3) Random Assortment}}} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{What is Spermatogenesis?}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spermatogenesis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The process when the seminiferous tubules of the testes produce sperm cells} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{When does it occur?}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Puberty} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{What does spermatogonia do?}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}They divide continously via mitosis unitl puberty all their daughter cells become spermatogonia} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}It remains at the basal lamina to maintain the germ cell line} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Steps of Meiosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Interphase}}\{\{nl\}\}{\bf{Prophase I}}\{\{nl\}\}{\bf{Metaphase I}}\{\{nl\}\}{\bf{Anaphase I}}\{\{nl\}\}{\bf{Telophase I}}\{\{nl\}\}{\bf{Prophase II}}\{\{nl\}\}{\bf{Metaphase II}}\{\{nl\}\}{\bf{Anaphase II}}\{\{nl\}\}{\bf{Telophase II}}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}