

b Cheat Sheet

by mrbhalerao via cheatography.com/141437/cs/31834/

DFA (Deterministic Fini	ite Automaton)
Automaton Representation	$M{=}(Q{,}\Sigma{,}\delta{,}q0{,}F)$
Q: Set of states	{q0,q1,q2}
Σ: input alphabet	$\{a,b\}\;\&\;\epsilon\notin\Sigma$
δ: transition function	$\delta(q,x)=q'$
q0: initial state	
F: set of accepting states	{q2}
Language of Automaton	$L(M)=\{ w \in \Sigma : \delta $ $(q0,w) \in F \}$

DFA: Each state has one transition for	

Languages are regular if a DFA exists for

evrey alphabet

that language.

NFA (No	n-deterministic	: Finite Automaton)
---------	-----------------	---------------------

Formal Definition	$M{=}(Q,\!\Sigma,\!\Delta,\!S,\!F)$
Q: Set of states	{q0,q1,q2}
Σ: input alphabet	{a,b}
Δ: transition function	$\Delta(q,x)=\{q1,q2,\}$ (include ϵ)
S: initial states	{q0}
F: set of accepting states	{q2}
Language of Automaton	$L(M) = \{w1, w2,, wn\}$

NFA: Each state can have different transition with the same language output

NFA to DFA Conversion

- 1. Set initial state of NFA to initial state of DFA
- 2. Take the states in the DFA, and compute in the NFA what the union Δ of those states for each letter in the alphabet and add them as new states in the DFA.

For example if (q0,a) takes you to {q1,q2} add a state {q1,q2}. If there isn't one, the add state null

NFA to DF	A Conversion	(cont)
11 / 1 (0 (0)	, r Collivolation	(COIII)

3. Set every DFA state as accepting if it contains an accepting state from the NFA

The language for the NFA (M) and DFA (M') are equivalent L(M)=L(M')

Pro	perties	of F	Reaex

L1 U L2	Initial state has two ϵ transitions, one to L1 and one to L2
L1L2L1L2	L1 accept state tranitions (ϵ) to L2 initial state
L1*	New initial state transitions to L1 initial state. New accept state transitions (ϵ) from L1 accept state. Initial to accept state transition transitions (ϵ) and vice versa.
L1R (reverse)	Reverse all transitions. Make initial state accepting state and vice versa.
!(L1) Complement	Accepting states become non-accepting and vice versa
L1 n L2	!(!(L1) ∪ !(L2))

P.S. To turn multiple states to one accept state in an NFA, just add a new accept state, and add transition to the old accept states with language ε.

Intersection DFA1 n DFA2

Transitions	DFA M: (q1,p1)→ a →-
M1:	(q2,p2)
$q1 {\rightarrow} \rightarrow q2$	
M2:	
$p1 {\rightarrow} {\rightarrow} p2$	
Initial State	DFA M: (q0,p0)

Initial State	DFA M: (q0,p0)
M1: q0	

M2:p0

Accept State DFA M: (qi,pj), (qi,pk)

M1 : qi M2: pj,pk

Regular Expressions	
L(r1+r2)	= L(r1) ∪ L(r2)
L(r1•r2)	= L(r1)L(r2)
L(r1*)	= (L(r1))*
L(a)	= {a}

NFA to Regular Language

Precedence: * → → • → +

- 1. Transform each transition into regex (e.g. (a,b) is a+b
- 2. Remove each state one by one, until you are left with the initial and accepting state
- 3. Resulting regular expression: r = r1 r2(r4+r3r1r2)* where:
- r1: initial → initial
- r2: initial → accepting
- r3: accepting → initial
- r4: accepting → accepting

Proving Regularity with Pumping Lemma

Prove than an infinite language L is not regular:

- 1. Assume L is regular
- 2. The pumping lemma should hold for L
- 3. Use the pumping lemma to obtain a contradiction:
- a. Let m be the critical length for L
- b. Choose a particular string w∈L which

satisfies the length condition |w|≥m

- c. Write w=xyz
- d. Show that w'=xy z∉L for some i≠1

By mrbhalerao

Published 24th April, 2022. Last updated 24th April, 2022.

Page 1 of 1.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

cheatography.com/mrbhalerao/