Cheatography

b Cheat Sheet	
by mrbhalerao via cheatograp	hy.com/141437/cs/31834/

DFA (Deterministic Finit	te Automaton)
Automaton Repres- entation	M=(Q,Σ,δ,q0,F)
Q: Set of states	{q0,q1,q2}
Σ: input alphabet	$\{a,b\} \And \epsilon \notin \Sigma$
δ : transition function	δ(q,x)=q'
q0: initial state	
F: set of accepting states	{q2}
Language of Automaton	L(M)={ w∈Σ <i>: δ</i> (q0,w)∈F}
	if a DEA exists for

Languages are regular if a DFA exists for that language.

DFA: Each state has one transition for evrey alphabet

NFA (Non-determinis	tic Finite Automaton)
Formal Definition	$M{=}(Q{,}\Sigma{,}\Delta{,}S{,}F{)}$
Q: Set of states	{q0,q1,q2}
Σ: input alphabet	{a,b}
∆: transition function	$\Delta(q,x)=\{q1,q2,\}$ (include ϵ)
S: initial states	{q0}
F: set of accepting states	{q2}
Language of Automaton	L(M) = {w1,w2,,wn}

NFA: Each state can have different transition with the same language output

NFA to DFA Conversion

1. Set initial state of NFA to initial state of DFA

2. Take the states in the DFA, and compute in the NFA what the union Δ of those states for each letter in the alphabet and add them as new states in the DFA.

For example if (q0,a) takes you to $\{q1,q2\}$ add a state $\{q1,q2\}$. If there isn't one, the add state null

By mrbhalerao

cheatography.com/mrbhalerao/

NFA to DFA Conversion (cont)

3. Set every DFA state as accepting if it
contains an accepting state from the NFA
The language for the NFA (M) and DFA (M')

L1 U L2 L1 L2L1L2 L1 accept state tranitions (ɛ) L1 accept state tranitions (ɛ) L1* New initial state transitions to L1 initial state. New accept state transitions (ɛ) from L1 accept state. Initial to accept state transitions (ɛ) from L1 accept state. Initial to accept state transitions (ɛ) from L1 accept state. Initial to accept state transitions (ɛ) and vice versa. L1R (reverse) L1 (L1) L1) L1 (L1) L1 (L1) U (L2) (L2)	Properties of Regex		
L1*New initial stateL1*New initial state transitions to L1 initial state. New accept state transitions (ε) from L1 accept state. Initial to accept state transition transitions (ε) and vice versa.L1R (reverse)Reverse all transitions. Make initial state accepting state and vice versa.!(L1) ComplementAccepting states become non-accepting and vice versa	L1 u L2	tions, one to L1 and one to	
L1initial state transitionsto L1 initial state. New accept state transitions (ε) from L1 accept state. Initial to accept state transition transitions (ε) and vice versa.L1RReverse all transitions. (reverse)Make initial state accepting state and vice versa.!(L1)Accepting states become non-accepting and vice versa	L1L2L1L2		
(reverse)Make initial state accepting state and vice versa.!(L1)Accepting states become non-accepting and vice versa	L1*	to L1 initial state. New accept state transitions (ϵ) from L1 accept state. Initial to accept state transition transitions (ϵ) and vice	
Complement non-accepting and vice versa		Make initial state accepting	
L1 ∩ L2 !(!(L1) ∪ !(L2))		non-accepting and vice	
	L1 n L2	!(!(L1) ∪ !(L2))	

P.S. To turn multiple states to one accept state in an NFA, just add a new accept state, and add transition to the old accept states with language ϵ .

Intersection DFA1 ∩ DFA2	
Transitions M1 : $q1 \rightarrow \rightarrow q2$ M2 : $p1 \rightarrow \rightarrow p2$	DFA M: (q1,p1)→ a →- (q2,p2)
Initial State M1: q0 M2 : p0	DFA M: (q0,p0)
Accept State M1 : qi M2 : pj,pk	DFA M: (qi,pj) , (qi,pk)

Published 24th April, 2022. Last updated 24th April, 2022. Page 1 of 1.

Regular Expressions		
L(r1+r2)	$= L(r1) \cup L(r2)$	
L(r1•r2)	= L(r1)L(r2)	
L(r1*)	= (L(r1))*	
L(a)	= {a}	
Precedence: * $\rightarrow \rightarrow \bullet \rightarrow +$		

NFA to Regular Language

 Transform each transition into regex (e.g. (a,b) is a+b

2. Remove each state one by one, until you are left with the initial and accepting state

3. Resulting regular expression: r = r1 r2(r4+r3r1r2)* where:
r1: initial → initial
r2: initial → accepting
r3: accepting → initial
r4: accepting → accepting

Proving Regularity with Pumping Lemma

Prove than an infinite language L is not regular:

1. Assume L is regular

2. The pumping lemma should hold for L

3. Use the pumping lemma to obtain a contradiction:

a. Let m be the critical length for L

b. Choose a particular string weL which

satisfies the length condition |w|≥m

- c. Write w=xyz
- d. Show that w'=xy $z \notin L$ for some $i \neq 1$

Sponsored by Readable.com Measure your website readability! https://readable.com