
QK Terraform Module Cheat Sheet
by Marco Ponton (mponton) via cheatography.com/173169/cs/36481/

 Main Reasons to Create a Module Main Reasons to Create a Module

Enforce standards, settings, and conven​‐
tions when deploying resources.

Offer a larger building block to facilitate
resource deploy​ment.

Implement logic to simplify users' life and
improve Terraform adoption.

 Naming Convention Naming Convention

BitBucket
Project
Key

We recommend you use a key
that starts with TF and add an
acronym to identify the main
provid​er/​pla​tform (e.g. TFAZ =
Azure, TFGC = GCP, TFVR =
vRealize Automa​tion, TFVS =
vSphere, ...).

Repository All reposi​tor​ies​/mo​dules
MUSTMUST be named using the
terraf​orm​-<p​rov​‐
ide​r>-​<na​me>
convention (e.g. terraf​‐
orm​-vs​phe​re-​win​‐
dows-vm, terraf​orm​-
az​ure​rm-​key​vault,
...).

 Repository Structure Repository Structure

/ - Root of the
module

/examples Required Examples of how
to use the
module

/images Optional If your docume​‐
ntation includes
images, put them
in this folder

/tests Optional If you have
Terratest files
put there in this
folder

 Base Module Files Base Module Files

.gitignore Required Git ignore (see
also
Security
section)

.terra​‐
for​m-d​‐
ocs.yml

Required terraf​‐
orm​-docs
config​uration

.tfsec​/c
o​nfi​‐
g.yml

Optional If tfsec is
enabled for the
reposi​tory, it
should have a
config​uration
file here

locals.tf Optional If you use
Terraform
locals, you
should put
them in this file

main.tf Required Main module
code

outputs.tf Required Defini​tions of
module outputs
should be put
in this file

provid​‐
er.tf

Required Terraform
providers
config​uration

README.md Required Main module
docume​ntation
(see also QK's
README.md
Cheat Sheet)

variab​‐
les.tf

Required Module
variables

If you prefer to organize your code in
different .tf files, you can do so, but often
a single main.tf is enough.

 Coding Conven​tions & Style Coding Conven​tions & Style

Always add comments when useful. This is
partic​ularly important to explain reasons
behind a specific design, choice of
resources or values, edge cases, known
bugs, issues or limita​tions in the code, etc.
Do not add comments just for the sake of it
(e.g. # Create resource foobar), add
comments when the code is not enough.

Use unders​cores (_) not dashes when
naming resources (e.g. vm_ima​ge_name
not vm-ima​ge-name).

When naming variables, check existing
modules and re-use existing names and
patterns. For example, if module X uses
google​_zone and you also need to
specify the zone, use the same name, not
gcp_zone. Same for patterns, if the most
common one is google_* use that pattern,
not gcp_*.

Be consistent when naming resources and
variables (e.g. don't name something
google_foo only to name the next thing
gcp_bar).

Remember that once your module is
published, renaming resources and
variables will become a breaking change
and may impact existing projects negati​‐
vely, so try to do it right the first time or
chances are we'll need to live with it.

Validate all user inputs (varia​bles) when
possible. Follow the "fail early" mantra, do
not let user create 13 resources only to fail
on the 14th when you can prevent it.

When validating variable inputs, use
multiple validation blocks when doing
different checks. This allows you to provide
more meaningful error messages.

By Marco PontonMarco Ponton (mponton)
cheatography.com/mponton/

Not published yet.
Last updated 12th January, 2023.
Page 1 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/mponton/
http://www.cheatography.com/mponton/cheat-sheets/qk-terraform-module
https://git-scm.com/docs/gitignore
https://terraform-docs.io/
https://github.com/aquasecurity/tfsec
https://developer.hashicorp.com/terraform/language/values/locals
https://developer.hashicorp.com/terraform/language/values/outputs
https://developer.hashicorp.com/terraform/language/providers/configuration
https://developer.hashicorp.com/terraform/language/values/variables
http://www.cheatography.com/mponton/
https://readable.com

QK Terraform Module Cheat Sheet
by Marco Ponton (mponton) via cheatography.com/173169/cs/36481/

 Coding Conven​tions & Style (cont) Coding Conven​tions & Style (cont)

When it makes sense, provide useful
defaults for variables.

Start the descri​ption of optional variables by
"​**O​PTI​ONAL:** " followed by the descri​‐
ption.

Do not use explicit depend​encies
(depends_on) unless necessary and you
understand the impacts. Always use implicit
depend​encies instead.

 Version Constr​aints Version Constr​aints

Your provid​er.tf file MUSTMUST include
version constr​aints.

Version constr​aints of each provider should
usually be locked to the major version of the
provider (e.g. version = "​>= 2.0, <
3.0") unless fully tested with multiple
major versio​ns".

If your code requires a specific minor of fix
version, use the correct constraint and
document why (e.g. Version 1.2.0 or
newer is required to prevent
issue when updating resources of
type XYZ`).

 Semantic Versioning Semantic Versioning

Terraform modules MUSTMUST follow Semantic
Versioning

Always pay attention to the changes you
make to a module! Terraform can be very
finicky and what may look like a simple
change may trigger a destroy operation in
existing project code.

Follow Semantic Versioning rulesrules, do not
fall for the "​small change​s" should not
change the major version number mentality.
For example, if you fix a typo in a variable
name, any existing code using this variable
will break, as such, small change = breaking
change = new major version.

 Project Upgrade Paths Project Upgrade Paths

When introd​ucing breaking changes,
always think about the best implem​ent​ation
for an upgrade path. We recommend you
also create a upgrad​e-v​X-t​o-vY.md
(for example: update​-v2​-to​-v3.md)
file with instru​ctions on how to upgrade
existing projects to the new major module
version from the last major version. This is
partic​ularly important if the breaking change
may introduce data loss (trigger a Terraform
destroy operat​ion).

 Docume​ntation Docume​ntation

Your module MUSTMUST include proper
docume​nta​tion. See QK's README.md
Cheat Sheet for details.

Docume​ntation MUSTMUST be part of the
repository and MUSTMUST be written in
Markdown. Feel free to split docume​ntation
into multiple files if needed, but always
make the README.md file the main point of
entry.

We also recommend you review some of
QK's GCP VM modules (e.g. Windows VM
for some sample README files.

 terraf​orm​-docs terraf​orm​-docs

Always ensure you have proper .terra​‐
for​m-d​ocs.yml in your repository and
run terraf​orm​-docs . after making
changes to your module to update docume​‐
ntation

Look into one of QK's latest Terraform
module for a recent copy of the .terra​‐
for​m-d​ocs.yml file.

 Security Security

When one or more providers in your module
are supported by the tfsec tool, you
should create a base .tfsec​/co​nfi​‐
g.yml and run the tool against your module
to validate it. If any issues are found, fix
them or if not possible, add the proper
exceptions to the config.yml file and
document them.

 Always exclude .tfvars, state files,
and any secrets using .gitignore before
you commit code.

 Releases Releases

Always tag official releases with a proper
vX.Y.Z semantic version tag.

Always ensure your README and any
other docume​ntation is up-to-date before
publishing a new release.

Always provide 2-3 up-to-date working
examples with your modules. Exception of
any authen​tic​ation and access, these
should work out-of​-th​e-box for any user that
wants to deploy them.

 Tips Tips

If your module relies on other modules,
always lock their version using either
version constr​aints (if using registry) or git
URL ref (e.g. ?ref=v​1.2.3).

When creating examples for your module,
provide at least one minimal and one
complete example.

Include all necessary files in your examples
so they can be used as a starting point for a
new project. For example, include a
.gitignore even if not needed for the
example to be functi​onal.

By Marco PontonMarco Ponton (mponton)
cheatography.com/mponton/

Not published yet.
Last updated 12th January, 2023.
Page 2 of 2.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/mponton/
http://www.cheatography.com/mponton/cheat-sheets/qk-terraform-module
https://developer.hashicorp.com/terraform/language/expressions/version-constraints
https://semver.org/#summary
https://gitprd.cn.ca/projects/TFGC/repos/terraform-google-windows-vm/browse
https://github.com/aquasecurity/tfsec
http://www.cheatography.com/mponton/
https://readable.com

	QK Terraform Module Cheat Sheet - Page 1
	 Main Reasons to Create a Module
	 Base Module Files
	 Coding Conven­tions & Style
	 Naming Convention
	 Repository Structure

	QK Terraform Module Cheat Sheet - Page 2
	 Project Upgrade Paths
	 Security
	 Version Constr­aints
	 Docume­ntation
	 Releases
	 Tips
	 Semantic Versioning
	 terraf­orm­-docs

