\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{MostAncientDream} \pdfinfo{ /Title (alvl-p2-telescopes-optional.pdf) /Creator (Cheatography) /Author (MostAncientDream) /Subject (Alvl P2: Telescopes (optional) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{0F40A3} \definecolor{LightBackground}{HTML}{F0F3F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Alvl P2: Telescopes (optional) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{MostAncientDream} via \textcolor{DarkBackground}{\uline{cheatography.com/168994/cs/42317/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}MostAncientDream \\ \uline{cheatography.com/mostancientdream} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 6th February, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.34379 cm} x{3.63321 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Overview}} \tn % Row 0 \SetRowColor{LightBackground} Convex Lens & () - {\emph{*focuses}} incident light \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Concave Lens & )( - {\emph{spreads out}}* incident light \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Principle Axis & the line passing through the centra of the lens, 90' to its surface \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} Real Image & formed when light rays {\bf{cross}} after refraction \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} Virtual Image & formed on the same side of the lens, where the rays {\bf{dont cross}} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} Power of a lens & a measure of how closely a lens can focus a beam that is parallel to the princple axis \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.94103 cm} x{3.03597 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Equations}} \tn % Row 0 \SetRowColor{LightBackground} Lens formula- 1/f & 1/u +1/v -{}-{}-(where u is the d from object to centre of lens, v is image for centre and f is focal length) \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Power (dioptres/D) & 1/f \tn % Row Count 7 (+ 2) % Row 2 \SetRowColor{LightBackground} normal adjustment & fo + fe (focal length till focal point + distance between focal point and distance to eyepiece)) \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} Anglar Magnication & angle subtended by image at the eye/ angle subtended by the object at the unaided eye \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} '' & fo / fe (where angles are less than 10') \tn % Row Count 17 (+ 2) % Row 5 \SetRowColor{white} minimum angular resolution & lambda / D (diameter of objective lens/mirror) \tn % Row Count 19 (+ 2) % Row 6 \SetRowColor{LightBackground} angle subtened & diameter x distance \tn % Row Count 20 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{with reference to minimum angular resolution -{}-\textgreater{} the smaller the angle the better the quality/resolution} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Adv of large diameter telescopes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{collecting power}}- a measure of the ability of a lens/mirror to collect incident em radiation (proportional to the area of the objective lens) \newline % Row Count 3 (+ 3) {\bf{resolving power}}- ability of a telescope to produce separate images of close together objects \newline % Row Count 5 (+ 2) -for this to happen the angle between striaght lines from earth to object must be at least the minimum angular resolution 0 = lambda/D \newline % Row Count 8 (+ 3) -this is also known as the {\bf{Rayleigh Critierion}} which states: \newline % Row Count 10 (+ 2) {\emph{two objects will not be resolved if any part of the central maximum of either image falls within the first minimum diffraction ring of the other}} \newline % Row Count 13 (+ 3) {\bf{CCD (charged couple device)}}- array of light-sensitive pixels, which become charged when they are exposed to light via photoelectric effect \newline % Row Count 16 (+ 3) quantum efficiency-percentage of incident photons which cause an electron to be released \newline % Row Count 18 (+ 2) spectral range- detectable rang eof wavlengths of light \newline % Row Count 20 (+ 2) pixel resolution- total number of pixels used to form an image \newline % Row Count 22 (+ 2) spatial resolution- minimum distance two objects must be apart to be distinguishable% Row Count 24 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.19002 cm} x{2.10542 cm} x{1.28156 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{comparing CCD and human eye}} \tn % Row 0 \SetRowColor{LightBackground} quantum eff & \textasciitilde{}80\% & 4-5\% \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} spectral range & IF,UV,visible & visible \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} Pixel res & varies but \textasciitilde{}50 megapixels & \textasciitilde{}500 megapixels \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} spatial res & 10 micrometers & 100 \seqsplit{micrometers} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{CCD are more useful for detecting finer details and producing images which can be shared and stored} \tn \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Astronomical Telescopes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{tba% Row Count 1 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textasciicircum{}Ray diagram for a refracting telescope in normal adjustment (c-PMT)\textasciicircum{} \newline \newline Normal adjustment- when the distance between the lenses is the sum of their focal lengths \newline this means the principle focus for these two lenses is in the same place} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{More Telescopes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Refracting telescopes have two converging lenses \newline % Row Count 1 (+ 1) - {\bf{objective lens}} used to collect light and create a real image of a distant object \newline % Row Count 3 (+ 2) \textgreater{} should have long focal length, large area to collect as much light as possible \newline % Row Count 5 (+ 2) -{\bf{eyepiece lens}} used to magnify the image produced. it produces a virtual image at infinity since the light rays are parallel reducing eye strain. \newline % Row Count 8 (+ 3) {\bf{collecting power}} is directly proportional to the square of the radius of the objective lens% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Reflecting telescopes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Cassegrain Reflecting Telescope: \newline % Row Count 1 (+ 1) - involves a primary concave mirror and secondary convex mirror \newline % Row Count 3 (+ 2) Mirrors in relfecting telescopes are a thin coating of aluminium/silver atoms that are deposited onto a backing material \newline % Row Count 6 (+ 3) - this allows the mirrors to be smooth and minimises distortion \newline % Row Count 8 (+ 2) \textasciicircum{}need to know how to draw a diagram of cassegrain.\textasciicircum{} \newline % Row Count 10 (+ 2) \textasciicircum{}points to note:\textasciicircum{} \newline % Row Count 11 (+ 1) \textasciicircum{}- mirror curves are clearly shown\textasciicircum{} \newline % Row Count 12 (+ 1) \textasciicircum{}- add the eye piece at the end \textasciicircum{} \newline % Row Count 13 (+ 1) \textasciicircum{}- rays have arrows and start parallel\textasciicircum{}% Row Count 14 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Comparing refracting/reflecting telescopes}} \tn % Row 0 \SetRowColor{LightBackground} disadv of refracting & adv of reflecting \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} glass must be pure, free from defects (hard for large diameters) & mirrors are unaffected by chromatic aberr, spherical can be avoided using parabolic mirrors \tn % Row Count 6 (+ 5) % Row 2 \SetRowColor{LightBackground} Large lens can bend/distort under their own weight & mirrors are not as heavy as lenses therefore easier to handle and manoeuvre \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} affects by both chromatic and spherical aberration & though chromatic aberr can affect eyepiece, it can be solved using achromatic doublet \tn % Row Count 15 (+ 5) % Row 4 \SetRowColor{LightBackground} large magnifications require very large diameter obj lens with very long focal lengths & mirrors that are a few nm thick can be made and give esxcellent image quality \tn % Row Count 20 (+ 5) % Row 5 \SetRowColor{white} lenses can only be supported from the edges which is diffocult as they are heavy and large & large primary mirrors are easy to support from behind as you dont need to see through them \tn % Row Count 25 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Aberration}} \tn % Row 0 \SetRowColor{LightBackground} Chromatic- & Spherical- \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} for a given lens the focal length of the red light is greater than the blue light meaning the y are focused at different points & the curvature of a lens/mirror can cause rays of light at the edge to be focused in a different position to those near the centre (outside has shorter focal legnth) \tn % Row Count 10 (+ 9) % Row 2 \SetRowColor{LightBackground} this can cause a white object to produce an image with coloured fringing & this leads to image blurring and distortion \tn % Row Count 14 (+ 4) % Row 3 \SetRowColor{white} as its caused by refraction it has little effect on relfecting telescopes and only occurs in the eyepiece lens & as its most pronounced in lenses with a large diameter it can be avoided completely by using parabolic objective mirrors \tn % Row Count 20 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Achromatic doublet}}- a way of minimising spherical and chromatic aberration in lenses \newline \newline - consists of a convex lens made of crown glass and a concave lens made of flint glass cemented together to bring all rays of light into focus at the same position \newline \newline (imagine convex next to concave)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Telescope types-}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{radio}} \newline % Row Count 1 (+ 1) - lowest energy,longest wavelength, can travel through dense interstellar clouds and allow to see motion of cold gas \newline % Row Count 4 (+ 3) {\bf{infrared}} \newline % Row Count 5 (+ 1) - used to see through cold dust in order to study warm gas/dust and relatively cool stars as well as molecular absorptions \newline % Row Count 8 (+ 3) {\bf{visible}} \newline % Row Count 9 (+ 1) - most stars emit the bulk of their em energy as, hotter-blue, colder- red \newline % Row Count 11 (+ 2) {\bf{UV}} \newline % Row Count 12 (+ 1) - emitted by the hot glow of the stellar nurseries and indentifies hottest/most energetic stars \newline % Row Count 14 (+ 2) {\bf{X-ray}} \newline % Row Count 15 (+ 1) - come from hottest gases that contain atoms, emitted from neutron stars or clouds of gas heated to millions of degrees including superheated material around a blackhole \newline % Row Count 19 (+ 4) {\bf{gamma}} \newline % Row Count 20 (+ 1) - highest energy, smallest wavelength, come from free electrons and stripped atomic nuclei accelerated by powerful magnetic fields in exploding stars, colliding neutron stars and supermassive black holes \newline % Row Count 25 (+ 5) - also used to observe gamma ray bursts, quasars and black holes \newline % Row Count 27 (+ 2) types of GRB: \newline % Row Count 28 (+ 1) -{\bf{short lived}} \textgreater{} last between 0.01 and 1 second (associated with merging neutron stars/neutron str falling into a black hole) \newline % Row Count 31 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Telescope types- (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{-{\bf{long lived}} \textgreater{} last between 10 and 1000 seconds (associated with a type 2 supernova-death of a massive star)% Row Count 3 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Telescope types- Radio and optical}} \tn % Row 0 \SetRowColor{LightBackground} similarities & differences \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} function in the same way- intercept and focus incoming radiation to detect its intensity & as radio is larger than visible, radio telescopes have to be larger in diameter to achieve the same quality/resolving power (as they have larger diameter they will have larger collecting power) \tn % Row Count 11 (+ 10) % Row 2 \SetRowColor{LightBackground} both can be moved to focus on different sources of radiation/to track a moving source & construction of radio is cheaper and simpler as a wire mesh is used instead of a mirror (mesh size must be less than lambda/20 to avoid refraction and reflect) \tn % Row Count 19 (+ 8) % Row 3 \SetRowColor{white} parabolic dish of radio is similar to objective mirror of reflecting optical & a radio must move across an area to build up an image unlike optical \tn % Row Count 23 (+ 4) % Row 4 \SetRowColor{LightBackground} both can be built on the ground since both waves can pass through the atmosphere & radio experiences large interferance from man-made sources, optical is only natural sources eg weather, light pollution \tn % Row Count 29 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}