Cheatography

Alvl P2: radioactive decay (ch11) Cheat Sheet by MostAncientDream via cheatography.com/168994/cs/39402/

Decay models of unstable nuclei							
Alpha α		Beta minus β-		Beta plus β+	Ga	amma y	
		N decay to P, emitting and /Ve	e	(K capture)	nu β d	icleu in exc decay	sited state emits photon-some after
²⁴¹ 95Am -> ²³ + ⁴ 2α	³⁷ 93Np	⁶³ 28Ni -> ⁶³ 29Cu +-10 /Ve	; +	¹²⁴ 53I +1 e-> ¹²⁴ 52 Te + Ve	99	42 Mo -> ⁹⁹	^{0m} 43 Tc + -1e + /Ve
				m -> metastable state	991	^m 43 Tc -> ⁹	⁹ 43 Tc + γ
				nucleus in high excited state for extended time	tin	ne (grater t	han a billionth of a second)
Equations			rad	radioactive decay		Uses of ra	adioisotopes:
decay rate	ecay rate $\Delta N/\Delta t = -\lambda$		>	> the significance of the - sign in $-\lambda N$ is		Radiotherapy	
activity		$A = \lambda N$	tha	t the number of radioactive nuclei in a		Gamma	- rotating source of gamma rays
half life		$T = In2/\lambda$	Exa	ample Question:		rays γ	
activity In2N/T		. Lanthanum-139 is the more abundant				tissue	
Number of atoms after decay $N = N_{\odot}e^{-\lambda t}$		isotope and makes up 99.911% of naturally				- focuses exposure to tumor	
activity after decay $A = A_0$		$A = A_0 e^{-\lambda t}$	0.089% is the radioisotope lanthanum-138			Alpha	- injected directly into the tissue
mass m		mol x RAM	. Lanthanum-138 has a decay constant	anthanum-138 has a decay constant of		rays α	
Definitions			$2.0 \times 10-19 \text{ s}-1$; and 139g of lanthanum contain 6 × 10^23 atoms.				- attach to a biological molecule (eg glucose) that needs to divide
sponta- neous	 can't be influenced/independent can't predict when it will happen probability of a nucleus decaying per unit time number of disintegrations (or emissions) per unit time when an atom/nucleus exists for an extended time in a state other than ground state er product of the decay of a radioactive ('parent') nucleus 		Ca La	alculate the activity of a 40g sample of anthanum ne number of atoms in 40g of lanthanum is $x10^{23} \times 40/139 = 1.73 \times 10^{23}$ owever, only 0.089% of these are lantha- um-138. to the number of lanthanum-138 nuclei is $= 1.73 \times 10^{23} \times 0.089/100 = 1.54 \times 10^{20}$			- collects to the caner cells that love to divide
random			The 6 x ⁻			Carbon d	
decay constant			Ho nui So			Carbon da	- uses ¹⁴ C (half life of 5700 years)
activity			N =				- The ratio of Carbon-14
metastable state			A= = 2 = 3	A=λN = 2.0x10 ⁻¹⁹ s ⁻¹ x 1.54x10 ²⁰ = 31Bq			since the death of a living substance
daughter nucleus						Nuclear Ir	nstability
half life	time taken for half of a sample					- every el	r most isotopes are unstable, and
	of radioactive nuclei to decay					decay by emission of radiation to become more stable	
						- this can	be plotted on a no.Neutrons to

no.Protons graph

Sponsored by **Readable.com** Measure your website readability! https://readable.com

By MostAncientDream

Published 26th January, 2024. Last updated 29th June, 2023. Page 2 of 2.

cheatography.com/mostancientdream/