Cheatography

Alvl P2: radioactive decay (ch11) Cheat Sheet by MostAncientDream via cheatography.com/168994/cs/39402/

Decay mode	els of unstable nu	uclei					
Alpha α Beta minus β-			Beta plus β+ ng e (K capture)		Gamma γ nucleu in excited state emits photon-some a β decay		
N decay to P, emitt and /Ve		-					
²⁴¹ 95Am -> ²³⁷ 93Np ⁶³ 28Ni -> ⁶³ 29 + ⁴ 2α /Ve		8Ni -> ⁶³ 29Cu +-	e + ¹²⁴ 53I +1e-> ¹²	¹²⁴ 53I +1e-> ¹²⁴ 52 Te + Ve		⁹⁹ 42Mo -> ^{99m} 43Tc + -1e + /Ve	
			m -> metastabl	e state	^{99m} 43 Tc ->	> ⁹⁹ 43 Tc + γ	
		nucleus in high excited state for extended time		time (grater than a billionth of a second)			
Equations			radioactive decay		Uses of radioisotopes:		
decay rate		$\Delta N / \Delta t = -\lambda N$	> the significance	> the significance of the - sign in -λN is at the number of radioactive nuclei in a ample material decreases over time xample Question:	Radioth	erapy	
activity		$A = \lambda N$			Gamma	a - rotating source of gamma ra	
half life		$T = In2/\lambda$	Example Question:		rays γ		
activity		In2N/T	. Lanthanum-139 is the more abundant			 reduces exposure to health tissue 	
Number of atoms after decay $N = N_{\odot}e^{-\lambda t}$		isotope and makes up 99.911% of naturally occurring lanthanum. The remaining		- focuses exposure to tumor			
activity after decay mass		$A = A_0 e^{-\lambda t}$ mol x RAM	0.089% is the radioisotope lanthanum-138 . Lanthanum-138 has a decay constant of		Alpha rays α	- injected directly into the tiss	
Definitions			$2.0 \times 10-19 \text{ s}-1$; and 139g of lanthanum contain 6 × 10^23 atoms.			- attach to a biological molec (eg glucose) that needs to div	
sponta- neous	can't be influenced/inde- pendent		<i>Calculate the activity of a 40g sample of Lanthanum</i>			- collects to the caner cells the love to divide	
random can't predict whe happen		hen it will		he number of atoms in 40g of lanthanum is $x10^{23} \times 40/139 = 1.73 \times 10^{23}$			
decay probability of a nucleus		However, only 0.089% of these are lantha-		Carbon	•		
constant	decaying per unit time		num-138. So the number of lanthanum-138 nuclei is N = $1.73 \times 10^{23} \times 0.089/100 = 1.54 \times 10^{20}$ so A= λ N = $2.0 \times 10^{-19} \text{ s}^{-1} \times 1.54 \times 10^{20}$ = 31 Bq			- uses ¹⁴ C (half life of 5700 years)	
activity	activity number of disintegrations (or emissions) per unit time					- The ratio of Carbon-14 remaining indicates the times	
metastable state	ble when an atom/nucleus exists for an extended time in a state other than ground state					since the death of a living substance	
daughter product of the decay of a			- 0104		Nuclear Instability		
nucleus radioactive ('parent') nucleus half life time taken for half of a sample of radioactive nuclei to decay				- howev	element has many different isoto ver most isotopes are unstable, a by emission of radiation to becom		

С

By MostAncientDream

cheatography.com/mostancientdream/

Published 26th January, 2024. Last updated 29th June, 2023. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

- this can be plotted on a no.Neutrons to

no.Protons graph