circular motion

a force moving in a circular experiences a centripetal force that acts towards the direction of axis of rotation
$F=m v^{2} / r$
velocity is a tangent to the force at a point

- constant speed but always changing directions
- therefore there is a variable acceleration
angular velocity
w = angular velocity/frequency/speed
in rads ${ }^{-1}$
$v=(2 p i / T) r=(2 p i f) r$
therfore
$\mathrm{v}=\mathrm{wr}$

loops

for vertical loops:
you have a circle
A- left furthest side
B- highest point
C- right furthest side
D- bottom
when travelling-
at $A / C>$ support force $=m v^{2} / r$
B $>\mathrm{mv}^{2} / \mathrm{r}-\mathrm{mg}$
D $>\mathrm{mv}^{2} / r+m g$
banked planes/banded tracks:
$\mathrm{mv}^{2} / \mathrm{r}=\mathrm{mgtan} 0$
to try and visualise-
-plane coming towards you
-angled towards the left the the right wing face towards the sky
-there is mg downwards
-centripetal to the left (axis of rotation)

- there is a force u angled up the the diagonal left at 0 degrees to the normal

By MostAncientDream

Published 11th February, 2024.
Last updated 11th February, 2024.
Page 1 of 1 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

