Cheatography

Alvl P1: work, energy and power (ch6) Cheat Sheet by MostAncientDream via cheatography.com/168994/cs/42315/

Work Done and Energy

Work done is **maximum** when cos0 = 0 (the force and distance travelled are therefore parallel)

Work done is **minimum** when cos0 = 90 (the force and distance travelled are therefore perpendicular)

types of energy:

- kinetic energy
- potential energy

- thermal energy (not covered in this spec point)

for example:

a ball held at a height will have Ep, when dropped and landing on the ground (assuming there is no energy loss) all the energy will be converted into Ek.

 $\Delta E = W$ --> change in energy in a system = work done on a system

Derrivations

Gravitational Potential Energy: $\Lambda F = W$ $\Delta E = Fxcos0$ (work done is force x distance x angle) where F = ma (in this case a is g) and distance is hieght travelled $\Delta E = mghcos0$ as cos0 where 0 is 0' cos0 = 1 so $\Delta E = mgh$ Kinetic Energy: $\Delta E = W$ $\Delta E = Fxcos0$ (work done is force x distance x angle) ∆E = Fs $(\cos 0 = 1)$ $\Delta E = mas$ $as v^2 = u^2 + 2as$ rearrange where u = 0 $as = v^2/2$ therefore $\Delta E = 1/2 \text{ mv}^2$

By MostAncientDream

Published 9th February, 2024. Last updated 8th February, 2024. Page 1 of 1. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/mostancientdream/

Definitions	
Work done	product of the force and the distance moved in this direction
power	rate of work done
	rate of energy transferred

Equations	
Work done	Fxcos0(where x is distance and 0 is theta between f and x)
change in energy	$\Delta E = W$
power	W/t
	Fx/t
	Fv
efficiency	useful/total (x100)

Conversion of energy

example of findign resistive forces going down hill --top | v=0 -----| ----| -----| --bottom | v=8 a ball is roll down from the top to the bottom -length of the ramp is 7m -height is 5m as ∆E = W energy at top (Ep no Ek) then energy at bottom (Ek no Ep) from this we know it is all transferred (assuming no loss to heat) therefore $\Delta E = mgh - 1/2mv^2$ mgh - $1/2mv^2 = Fx$ (where x is length of ramp) then just put in numbers to solve for F