\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{MostAncientDream} \pdfinfo{ /Title (alvl-p1-energy-levels-and-particles-of-light-ch3.pdf) /Creator (Cheatography) /Author (MostAncientDream) /Subject (Alvl P1: energy levels and particles of light(ch3) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{E8C92C} \definecolor{LightBackground}{HTML}{FDFBF1} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Alvl P1: energy levels and particles of light(ch3) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{MostAncientDream} via \textcolor{DarkBackground}{\uline{cheatography.com/168994/cs/42333/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}MostAncientDream \\ \uline{cheatography.com/mostancientdream} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 9th February, 2024.\\ Updated 9th February, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{2.08 cm} x{5.92 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Excitation} & process of an electron taking in exactly the correct quantity of energy to move to a higher level \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{ionisation} & process of an atom losing an orbital electron and becoming charged \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} ground state & the most stable energy level that an electron can exist in \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} energy levels & defined and distinct energies at which electrons can exist in an atom \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} threshold freq & min freq of photons required for photoelectrons to be emitted from the surface of a metal plate \tn % Row Count 16 (+ 4) % Row 5 \SetRowColor{white} work function & min energy required to remove an electron from the metal's surface \tn % Row Count 19 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Fluorescent tube (Exam q)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{a fluorescent covered tube with mercury vapour inside. \newline % Row Count 2 (+ 2) process: \newline % Row Count 3 (+ 1) 1. thermonic emission to raise electrons to the surface \newline % Row Count 5 (+ 2) \textgreater{} energy has to be equal to or greater than the energy gap between energy levels to interact \newline % Row Count 7 (+ 2) 2. potential difference is applied (V = w/q) so work is done on the electron to accelerate it across the tube \newline % Row Count 10 (+ 3) 3. electrons will collide with mercury vapour causing excitation (risk of electron capture however unlikely due to mercurys stability) \newline % Row Count 13 (+ 3) \textgreater{} electrons will continue to interact even after a single interaction as the field continues to accelectrate them \newline % Row Count 16 (+ 3) 4. electrons dexcite, releasing energy certain frequency \newline % Row Count 18 (+ 2) 5. mercury vapour has small wavelength photons (discrete) of light released in any direction \newline % Row Count 20 (+ 2) 6. this causes the photon to interact with the phosphorous which must have the exact energy gap \newline % Row Count 22 (+ 2) \textgreater{} small wavelength = large energy \newline % Row Count 23 (+ 1) 7. most of the phosporous energy levels are visible light spectrum, it has fluoresced \newline % Row Count 25 (+ 2) \textgreater{} absorb short, release long wavelength \newline % Row Count 26 (+ 1) questions possibly answered: \newline % Row Count 27 (+ 1) - how does the fluorescent tube worked \newline % Row Count 28 (+ 1) - why is mercury vapour used \newline % Row Count 29 (+ 1) - what does the phosphorous do \newline % Row Count 30 (+ 1) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Fluorescent tube (Exam q) (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- do the electrons continue to interact after interacting once% Row Count 2 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Electron diffraction}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{electron diffraction is evidence for wave behaviour. \newline % Row Count 2 (+ 2) -as an electron passes through a diffraction grating the electron wave spreads out/is diffracted. \newline % Row Count 4 (+ 2) -an interferance pattern is produced, bright rins at where maximum intensity occurs/interfere constructively \newline % Row Count 7 (+ 3) working out velocity of an electron from an electron gun: \newline % Row Count 9 (+ 2) - cathode(-) fires electrons through an anode(+) grating \newline % Row Count 11 (+ 2) - there is a potential difference between the cathode/anode known as the {\bf{accelerating voltage}} \newline % Row Count 13 (+ 2) V = E/Q so E = eV (e is Q) \newline % Row Count 14 (+ 1) eV (energy) = 1/2mv\textasciicircum{}2\textasciicircum{} \newline % Row Count 15 (+ 1) and rearrange for v \newline % Row Count 16 (+ 1) v = square root(2eV/m) \newline % Row Count 17 (+ 1) this can be substituted into de broglie wavelength equation% Row Count 19 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4.64 cm} x{3.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Equations}} \tn % Row 0 \SetRowColor{LightBackground} photon energy & hf \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} & hc/lambda \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} de broglie wavelength & h/p (momentum) \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} & h/mv \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} threshold freq & work function/h \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Excitation and ionisation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- when an electron gains energy via a photon, if the photon contains the correct amount of energy for the energy level, an electron will excite to the next energy level \newline % Row Count 4 (+ 4) - (if it had enough energy to ionise it becomes a free electron) \newline % Row Count 6 (+ 2) - (if it did not have enough energy to get to the next energy level then the photon passes through the atom without interacting) \newline % Row Count 9 (+ 3) - the electron is now in an unstable state \newline % Row Count 10 (+ 1) - to overcome this the electron will eventually de-excite (return to the energy level) and release a corresponding photon in the process% Row Count 13 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{photons}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{an atom could have absorbed a singular photon to excite multiple energy levels. \newline % Row Count 2 (+ 2) as it dexcites and releases energy this can be in the form of multiple photons. \newline % Row Count 4 (+ 2) for example: \newline % Row Count 5 (+ 1) if a photon excites an electron 2 energy levels, then when it dexcites it can either go \newline % Row Count 7 (+ 2) n=3 \textgreater{} n=1 (with the corresponding energy difference) \newline % Row Count 9 (+ 2) or \newline % Row Count 10 (+ 1) n=3 \textgreater{} n=2 \textgreater{} n=1% Row Count 11 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{spectrums}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Absorption spectrums: \newline % Row Count 1 (+ 1) - these look like rainbom bars with black lines vertically across them \newline % Row Count 3 (+ 2) black lines \textgreater{} frequencies/wavelengths absorbed \newline % Row Count 4 (+ 1) Emission spectrums: \newline % Row Count 5 (+ 1) - these look like black bars with single coloured lines vertically across them \newline % Row Count 7 (+ 2) coloured line \textgreater{} emitted frequency/wavelength \newline % Row Count 8 (+ 1) ** you should expect more lines on the emission spectrum as there is more paths it can take per photon absorbed when dexciting% Row Count 11 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{photoelectric effect}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{photoelectric effect: \newline % Row Count 1 (+ 1) light is modelled as photons (\textasciitilde{}discrete packets of energy) \newline % Row Count 3 (+ 2) E = hf \newline % Row Count 4 (+ 1) {\emph{if wave theory was correct then the surface electrons should be liberated with any f of light so long as its bright enough}} \newline % Row Count 7 (+ 3) when surface electrons are liberated from the surface, they have Ek. \newline % Row Count 9 (+ 2) it is a 1-1 interaction \newline % Row Count 10 (+ 1) - higher intensity {\bf{does not equal}} Ek max \newline % Row Count 11 (+ 1) - 1 photon absorbed by 1 electron \newline % Row Count 12 (+ 1) - to measure the Ek set up an excavated tube with metal plates on either side connected to a battery. \newline % Row Count 15 (+ 3) - turn up the voltage on the battery until no electrons reach the other plate (the ammeter will read 0) \newline % Row Count 18 (+ 3) - this is the {\bf{stopping potential (Vs)}} \newline % Row Count 19 (+ 1) V = E/Q \textgreater{} Vs = Ek/e \textgreater{} Ek max = eVs \newline % Row Count 20 (+ 1) (Ek max is electrons liberated from surface) \newline % Row Count 21 (+ 1) Graphs: \newline % Row Count 22 (+ 1) Ek max - f graph \newline % Row Count 23 (+ 1) y = mx +c \newline % Row Count 24 (+ 1) into \newline % Row Count 25 (+ 1) Ek max = hf - work funtion (always a negative) \newline % Row Count 26 (+ 1) the x intercept is the threshold frequency% Row Count 27 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}