Cheatography

Alvl P1: electricity (ch9) Cheat Sheet by MostAncientDream via cheatography.com/168994/cs/42337/

			Laws
potential	the measure of how much energy	rgy is transferred by	Kirchho
difference	each coloumb of charge		1st law
current	the rate of flow of charge		Kirchho
resistance	the measure of how much a co flow of current	mponent resists the	2nd lav
resistivity	how resistive a material is to th	e flow of charge	resista
emf	energy supplied to each unit ch	narge	
Series and F	Parallel circuits		
	series	parallel	
pd	shared across componenets	equal	
current	same for all components	split at branches	
resistance	sum of resistances	reciporacal	
bour or the	se can be used a potential dividers	5	
Power, AC/)C, rms		
AC - alternat	ing current		
eg mains ele	ectricity		
DC - direct of			
	urrent		
eg. a battery	urrent		
rms:	urrent		
rms:	urrent squared- average of variables		
rms: root means s P av = V rms mains uk: V	urrent squared- average of variables s I rms rms = 230V		
rms: root means s P av = V rms	urrent squared- average of variables s I rms rms = 230V		
rms: root means s P av = V rms mains uk: V	urrent squared- average of variables s I rms rms = 230V		
rms: root means s P av = V rms mains uk: V X rms = Xo / EMF Emf is the to	urrent squared- average of variables s I rms rms = 230V $2^{1/2}$ tal energy a battery has however t	the measured value	
rms: root means s P av = V rms mains uk: V X rms = Xo / EMF Emf is the to will be small	urrent squared- average of variables s I rms rms = 230V $2^{1/2}$ tal energy a battery has however t	the measured value	
rms: root means s P av = V rms mains uk: V X rms = Xo / EMF Emf is the to will be small this is due to	urrent squared- average of variables s I rms rms = 230V $2^{1/2}$ tal energy a battery has however t er	the measured value	

Laws	
Kirchhoffs 1st law	charge and current is conserved at any junction in a circuit
Kirchhoffs 2nd law	the sum of the emfs must equal the sum of the pd drop in a closed loop

ohms law:

current and pd in an ohmic conductor held under constant physical conditions are directly proportional (resistance is the constant of proportionality)

V = IR << for a fixed resistor only

resistance is not constant for objects such as filament lamps - this is due to the delocalised electrons colliding with the ironic lattice

- this causes them to vibrate more and increase temperature

you can reverse the cell to obtain negative values for I and V diodes only let current flow in one direction-

> low resistance = forward direction

> high resistance = backward direction

no current flows until it reaches breaking voltage on either side (ve/+ve)

superconductors- material that resistance decreases to 0 at the critical temperature

Resistivity:

how to work it out

1. measure the diameter of the wire with a micrometer and calculate the cross-sectional area

2. change the L of the wire by moving one crocodile clip

3. use wire of material for which resistivity does not change much eg nichrome

4. calculate R from V/I for each length

Variable resistors:

rheostat > change the current, can never turn the bulb off (permanently connected)

potentiometer > change the voltage, can turn the bulb off (doesnt have to be connected)

situations:

if you have two different identical circuits with a resistor each, one has 20R and the other R, what is the similarities and differences:

S- voltage is the same at the end of both

D- current is different, R would have more current as R is lower than 20R

D- physical difference would be R is hottoer as its being hit by more current, quicker

if you have a circuit with parallel resistors, with two in series, if the proportions between the resistors on each side of the parallel circuit is the same then no current flows as theres no voltage -> no potential difference

parallel circuit. one branch has an ideal voltmeter and resistor, other branch has two resistors, battery has 5 V. as it is an ideal voltmeter is has infinite resistance. this means one side of the branch has 5V and the otherside has 0V, this means the resistor has next to it has no voltage passing through it therefore is not included when working out total resistance of the circuit.

By MostAncientDream

Published 11th February, 2024. Last updated 11th February, 2024. Page 1 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/mostancientdream/