Cheatography

The Prokaryotic World -Lecture 3 Cheat Sheet by Morghay123 via cheatography.com/53154/cs/14427/

Kingdom/Domain System Evolution

1. 2 - PlantsKingdoms - Animals

2. 5 - ManeraKingdom - Plant

- Animal - Fungi

- Fungi - Protists

wrong bbecause this is saying that all the differences are equal, which is false because they evolved at different times

3. 3 Domain System

System

Current System. Domains are more broad than kingdom

Bacteria V. Archaea

Archaea = Hottest places on earth

Archaea cell membrane

- Formed by phospholipid bilayer

Hydrocarbon chains can be linked so their lipids can be a monolayer. Makes membrane more stable/loss fluid. Helps retain integrity

Bacterial Peptidoglycan

Carbohydrate chains cross linked with amino acids

- Plant cell walls are made of cellulose in strands
- Cellulose doesn't contain the cross linked amino acids that connect the chains (PLANTS = cellulose)

Cross link= very strong substance. need this because bacteria is single celled

What Unites Prokaryotes

All are conditional with known exceptions

Unicellularity: almost always single-celled

Cell size: mostly very small

Chromosomes: *typically* have a single circular chromosome, genetical material can be exchanged via HGT

Cell division: *mainly* occurs by binary fission, no mechanism for sexual reproduction (asexual reproduction)

Internal compartmentation: *no true membrane* bound organelles

Flagella: *simple structure* allows only for simple mechanism

Metabolic diversity: can be capable of metabolic feats requiring remarkable chemistry

Gram Stain- Often first step in treatment

- Gram-stains are still ofte the first figure in clinical articles about pathogens

How does genetic diversity arise?

Examples of Horizontal Gene Transfer

Conjugation Transduction 1. One strand of F+ 1. Phage infects cell plasmid DNA bacterial donor cell breaks at arrowhead with A+ and B+ alleles 2. Broken strand 2. Phage DNA is peels off and enters replicated and F- Cell proteins synthesized 3. Donor and 3. Fragment of DNA

recipient cells synthesize complementary DNA strands

4. Recipient cell is now a recombinant

F+ cell

with A+ allele is packaged within a phage capsid

pient cell is 4. Phage with A+
ecombinant allele infects bacterial
recipient cell

How does genetic diversity arise? (cont)

5. Incorporation of phage DNA creates recombinant with genotype A+B

Chromosomes are mostly sincle celled and horizontal transfer can be given to anyone in the same environment

Pili merge and join cytoplasm

plasmids: where antibiotic genes are held

Virus serving as a boat for exchange of genetic material

Cellular Life

Unicellular - Most of earths organisms in history

Multicellular - Fungi, Plants, Animals

Domains

Archaea are more closely related to eukarya than

	Bacteria	Archae a	Eukarya
Nuclear Envelope	Absent	Absent	Present
Membrane - enclosed Organelles	Absent	Absent	Present
Peptidogly can in Cell Walls	Present	Absent	Absent
Membrane Lipids	Unbranched Hydrocarbo ns	Some branced hydroca rbons	Unbranched hydrocarbon s
HNA Polymeras e	One kind	several kinds	several kinds

By Morghay123

cheatography.com/morghay123/

Not published yet. Last updated 26th January, 2018. Page 1 of 3. Sponsored by **Readability-Score.com**Measure your website readability!

https://readability-score.com

The Prokaryotic World -Lecture 3 Cheat Sheet by Morghay123 via cheatography.com/53154/cs/14427/

Domains (cont)				
Initiator amino acid for protein synthesis	Formyl- methioni ne	Methionine	Methionine	
Introns in genes	Very rare	present in some genes	present in many genes	
Responsib le to the antibiotics streptomy cin and chloramph omicol	Growth usually inhibited	Growth not inhibited	Growth not inhibited	
Histones associated with DNA	Absent	Present in some species	Present	
Circular Chromoso me	Present	Present	Absent	
Growth at temperatur es >100C	No	Some Species	No	

Archea membrane lipids can form monomers

Introns show more complex genetically

Histones allow packaging of DNA. No histones means doesn't have to be as compacted

Internal Membrane or Organelles?

Some internal membranes are complex invaginations of the Plasma Membrane

Aerobic	Photosynthetic
Prokaryote	Prokaryote
Respiratory membrane	Thylakoid Membrane
Cyanobacteria> start	ed O2 release

Metabolic Diversity of Prokaryotes

Carbon	Energy Source
Source	
A. Autotrophs	A.Phototrophs
B.	B.Chemotrophs
Heterotrophs	Organic
	(Chemo organo trophs)
	Inorganic
	(Chemolithotrophs)

Prokaryotic metabolism varies with respect to O2

Obligate aerobes require O2 for cellular respiration

Obligate anaerobes are poisoned by O2 and use fermentation or **anaerobic respiration**, in which substances other than O2 act as electron acceptors

Facultatice anaerobes use O2 if it is available, but can survive without it

Nitrogen Metabolism

Prokaryotes ungergo NITROGEN FIXATION

Additional Points

- 1. Source of Carbon: biomolecules have carbon skeletons
- -Where does the organism get the carbon atom from?
- --heterotrophs: Organic molecules
- 2. Aquire energy to arrange carbon atoms -phototrophs=sun
- -Chemotrophs=organic

Oxygen has nothing to do with this at this time

Phacaltative: can survive with or without O2

Nitrogen Metabolism: Need nitrogen!

-can only get it from other molecules

only thing that can break the triple bond of nitrogen is prokaryotes. N2= most on earth

-not found purely in the environment. "chillin with other species"

First Cellular Life Form Appearance

3.9 Billion Years Ago

For 3.9 Billion Years life has been evolving to the present life forms

- Humans organise life by phylogeny

Closest # = least # of nucleotide differences

more differences in sequence, the longer the time difference

Interesting Facts

It is estimated that only 1-10% of bacteria species are know

We think that maybe 1% of archaea species are known

Why are so few prokaryotic species known?

We dont know more about bacteria because they have just been studied by growing them in a lab.

Most bacteria metabolisms are so complex they cant figure out how to get them to grow on their own, in a lab

Cell walls are found in which of the following domains?

Bacteria, Archaea, Eukarya

- Cell walls in all domains (cell walls are made of peptidoglycans)

Prokaryotic Shape

There is no correlation between prokaryotic cell shape and gram-stain or other test

Bacillus: 0.5um

Coccus: 2um strep

Spirillum: 3um *lyme disease*

There is no correlation between prokaryotic cell shape and gram-stain or other test

By Morghay123

cheatography.com/morghay123/

Not published yet. Last updated 26th January, 2018. Page 2 of 3. Sponsored by **Readability-Score.com** Measure your website readability!

https://readability-score.com

The Prokaryotic World -Lecture 3 Cheat Sheet by Morghay123 via cheatography.com/53154/cs/14427/

Bacterial Cell Wall		Domains	
Bacteria can be class	sified by their cell wall	Bacteria	most abundant organisms on
Gram (+)	Gram (-)	-	earth. Highly diverse and poorly
- Teichoic acid only in G+	- LPS major endotoxin	prokaryo tic	understood.
- Lipoteichoic Acid (LTA)	Thin peptidoglycan and outer/inner membrane	Archaea -	But different from bacteria. Very poorly understood
1 1 0,	one of the major	prokaryo tic	
membrane		Each doma	Each domain is monophyletic
	the body to get sick	Monophyl	Contain all decendents of common
Cell wall of bacteria=	traditional classification	etic	ancestor

Gram stains change approach to treatment

The Gram Stain-Identifies Bacterial Category

- 1. Bacteria are stained with crystal violet all cells are stained purple
- 2. lodine stabilizes the crystal violet with the cellular material
- 3. Alcohol may extract the crystal violet from the cell

The stain complex is removed from the gramnegative cells (makes them white/clear) and remains in the gram-positive cells (stays purple)

4. Bacteria are stained with safanin

Gram-negative cells are stained pink; gram

ppositive cells are still purple

All microbes can be stained in this way. But with cells in the **Domain Bacteria** (only), the staining makes predictions about envelope structure.

cell wall and membranes

Other Notes

Alcohol breaks down membrane and wash out iodine

- + doesn't allow this to happen

This procedure only works for bacteria

By Morghay123	N
cheatography.com/morghay123/	L
	F

Not published yet. Last updated 26th January, 2018. Page 3 of 3. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com