\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Molly} \pdfinfo{ /Title (topic-2-radioactivity.pdf) /Creator (Cheatography) /Author (Molly) /Subject (Topic 2 - Radioactivity Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Topic 2 - Radioactivity Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Molly} via \textcolor{DarkBackground}{\uline{cheatography.com/30516/cs/9103/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Molly \\ \uline{cheatography.com/molly} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 14th September, 2016.\\ Updated 14th September, 2016.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Nuclear Nomenclature}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Ground state:}} Energy tends prefers arrangements where the lowest energy state is achieved.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Radioactivity:}} nucleus undergos a reaction to lower its energy and become more stable} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Nuclide:}} an atomic species with a definite number of protons and neutrons arranged in a definite order in the nucleus.} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Radionuclide:}} nuclides that are unstable and thus decay by emission of particles or electromagnetic radiation.} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Isomer:}} nuclides with the same number of protons and neutrons, but different energy states.} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Nuclear binding energy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The energy that would be required to disassemble the nucleus of an atom into its component parts.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Mass Deficit}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The mass of a nucleus is always less than the combined masses of the nucleons (protons + neutrons). The difference in mass is termed the {\bf{mass deficit}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{[}protons + neutrons + electrons{]} - {[}mass of atom{]} = {[}mass deficit{]}} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The average binding energy of a nucleon = the total binding energy (calculated from the mass deficit) divided by the number of nucleons.} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Radioactivity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Radioactive decay:}} an unstable nucleus (the parent) decays into a more stable product (the daughter).} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Decay energy:}} Nuclear energy is released as the daughter is at a lower energy level than the parent, this is in the form of particles, electromagnetic radiation (usually gamma rays) or kinetic energy} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{1. Particles:}} alpha (2 protons, 2 neutrons); beta- β+ (positive electron – positron) and β- (negative electron); Neutrons} \tn % Row Count 11 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{2. Electromagnetic:}} gamma rays; x-rays} \tn % Row Count 12 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Total radioactive decay constant λ:}} a characteristic parameter for each radioactive decay process, independent of the age of the radioactive atom and is essentially independent of physical conditions} \tn % Row Count 17 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Decay rate}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473825842_eqn3.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Decay rate/Activity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{For a sample of N radioactive atoms} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{λ is the decay constant and has a characteristic value for each radionuclide} \tn % Row Count 3 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Physical Half-life}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Time required to reduce its initial disintegration rate (activity) to one half.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Nuclide Activation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Radioactivation:}} Stable nuclei may be transformed into unstable radioactive nuclei by bombardment with suitable particles or photons of appropriate energy} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Nuclear reactors are the main source of radionuclides used in medicine.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Activation with Thermal Neutrons}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{This uses neutron activation or neutron capture and produces neutron-rich unstable isotopes that decay through β− decay into more stable configurations} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Two types of neutron activation processes occur commonly: (n, γ) and (n, p)} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{(n, γ) process results in emission of γ rays} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{(n, p) process results in emission of protons} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{This results in a mixture of stable parent nuclei and radioactive daughter nuclei. The parent act as carriers of the daughter and decrease activity.} \tn % Row Count 11 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Tc-99m is the radionuclide that is used in more than 90 percent of all nuclear medicine procedures}}} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Activation with Protons/Heavier Charged Particles}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Protons produced by {\bf{cyclotrons}} are used in the production of proton-rich unstable radionuclides that decay through β+ decay or electron capture into more stable configurations.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{When striking a target material, protons may cause nuclear reactions that produce radionuclides in a manner similar to neutron activation in a reactor.} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Because of their positive charge, protons striking the target must have high kinetic energies to penetrate the repulsive Coulomb barrier surrounding the positively charged nucleus.} \tn % Row Count 12 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Proton activation reactions are {\bf{endoergic:}} energy must be supplied by the projectile for the reaction to occur.} \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Threshold energy:}} minimum energy that will allow the reaction to occur} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Decay Schemes}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473838265_2_5.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Decay by Alpha Emission}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The nucleus ejects an α-particle which consists of two neutrons and two protons (\textasciicircum{}4\textasciicircum{}He nucleus)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{It is a 'massive' particle absorbed \textasciitilde{} 0.03 mm in body tissues} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Common among very heavy elements.} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The daughter is often in an excited state resulting in the emission of gamma rays.} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alpha Decay}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473838569_A decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Decay by β− Emission}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{When a radionuclide is neutron rich (that is, it has more neutrons than the stable isotope), it decays by the emission of a beta particle (β) and an antineutrino.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{a neutron is converted into a proton so that the atomic number Z of the product increases by one.} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A β particle is also an electron} \tn % Row Count 7 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{A β particle originates from within the nucleus whereas an electron originates from the extranuclear electron orbitals.} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Antineutrino:}} a particle which is is non-reactive, has no charge and essentially no mass} \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The beta particle and the antineutrino are ejected from the nucleus with kinetic energy equal to the energy released in the process (ie. they carry away some of the energy released in the decay process)} \tn % Row Count 17 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{β− Decay}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473838938_B- decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Decay by (β-, γ) Emission}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Decay by beta emission can result in a daughter nucleus in an excited state} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{This excited state will decay to the ground state by the emission of γ-rays as the nucleons fall to a lower energy state.} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{(β-, γ) Decay}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473839318_B, y decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Isomeric Transition (IT)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A daughter nucleus may be formed in a 'long-lived' {\bf{metastable state}}, hen decay by the emission of a γ-ray.} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Isomeric Transition Decay}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473839470_IT Decay.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Electron Capture (EC) and (EC,γ) Decay}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{When a radioactive nucleus has fewer neutrons than its stable isotope, it can undergo decay by electron capture} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{An orbital electron is 'captured' by the nucleus and combines with a proton to form a neutron.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The daughter product is often in an excited or metastable state, therefore gamma rays may also be emitted.} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electron Capture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473840031_Electron capture.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Positron (β+) and (β+,γ) Decay}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Neutron-deficient (proton-rich) radionuclide} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{A proton is converted to a neutron, a positron and a neutrino, thus decreasing the atomic number of the daughter nuclide by one.} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The β+ particle (positron) collides with an ordinary electron in an annihilation reaction in which the combined mass is converted into energy.} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The energy appears in the form of two annihilation photons (each 0.511 MeV) travelling in opposite directions (180° apart).} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The daughter may be left in an excited state resulting in additional γ-rays being emitted, i.e. (β+,γ) decay.} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Positron (β+) and (β+,γ) Decay}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473840295_Positron decay.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} p{0.4977 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{β+ Decay and Electron Capture}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Positron emission and electron capture have the same effect on the parent nuclide, they reach the same endpoint} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{If the decay is by electron capture, then either x-rays or Auger electrons will be emitted, not positrons.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Positron decay occurs more frequently among lighter elements} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Electron capture is more frequent among heavier elements where orbital electrons are closer to the nucleus and more easily captured.} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Some radionuclides can decay by either mode and the percentage for each process is fixed for a given radionuclide.} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{β+ Decay and Electron Capture}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/molly_1473840575_+ Decay and Electron Capture.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}