Cheatography

Discrete Math - Proofs Cheat Sheet by mkenny via cheatography.com/177372/cs/37028/

DEFINITIONS	
Even Integer	An integer x is even if there is an integer k such that $x = 2k$.
Odd Integer	An integer x is odd if there is an integer k such that x = 2k+1.
Parity	Whether the number is odd or even
Divides	An integer x divides an integer y if and only if $x \neq 0$ and $y =$ kx, for some integer k. Denoted x y. If x does not divide y, then that fact is denoted x \nmid y. If x divides y, then y is said to be a multiple of x, and x is a factor or divisor of y.
Prime	An integer n is prime if and only if $n > 1$, and the only positive integers that divide n are 1 and n.
Composite	An integer n is composite if and only if n > 1, and there is an integer m such that 1 < m < n and m divides n.
Rational	A number r is rational if there exist integers x and y such that $y \neq 0$ and $r = x/y$.
ZERO	0 is rational. For example if x = 0 and y = 1, then $y \neq 0$ and $x/y = 0/1 = 0$.

METHOD DEFINITIONS

constructive proof of existence	
A proof that shows that an existential	
statement is true.	
proof by exhaustion	

Allowed assumptions in proofs

The rules of algebra.

For example if x, y, and z are real numbers and x = y, then x+z = y+z.

The set of integers is closed under addition, multiplication, and subtraction.

n other words, sums, products, and differences of integers are also integers.

Every integer is either even or odd.

This fact is proven elsewhere in the material.

If x is an integer, there is no integer between x and x+1.

In particular, there is no integer between 0 and 1.

The relative order of any two real numbers.

For example 1/2 < 1 or $4.2 \ge 3.7$.

The square of any real number is greater than or equal to 0.

This fact is proven in a later exercise.

Choosing a Method

Common keywords and phrases in proofs

Thus, therefore then, hence, it follows that A statement that follows from the previous statement(s)

ex. n and m are integers. Therefore, n+m is also an integer.

Let, suppose

Introduce a new variable

ex. "Let x be a positive integer" "Suppose that x is a positive integer"

Since

If a statement depends on a fact that appeared earlier in the proof or in the assumptions of the theorem, it can be helpful to remind the reader of that fact before the statement.

ex. "Since x > 0 and y > z, then xy > xz."
By definition

A fact that is known because of a definition ex. "The integer m is even. By definition, m = 2k for some integer k."

By assumption

A fact that is known because of an assumption

ex. "By assumption, x is positive. Therefore x > 0."

"gives" and "yields"

useful to say that one equation or inequality follows from another

provides clarity to justify algebraic steps *ex. Multiplying both sides of the inequality x > y by 2 gives 2x > 2y.

Substituting m = 2k into m2 yields $(2k)2^*$ Since z > 0, we can multiply both sides of the inequality x > y by z to get xz > yz.

By **mkenny** cheatography.com/mke

Not published yet. Last updated 15th February, 2023. Page 1 of 1. Sponsored by Readable.com Measure your website readability!