DEFINITIONS

Even Integer	An integer x is even if there is an integer k such that $\mathrm{x}=2 \mathrm{k}$.
Odd Integer	An integer x is odd if there is an integer k such that $x=$ $2 k+1$.
Parity	Whether the number is odd or even
Divides	An integer x divides an integer y if and only if $x \neq 0$ and $y=$ kx , for some integer k . Denoted $x \mid y$. If x does not divide y, then that fact is denoted $x \nmid y$. If x divides y, then y is said to be a multiple of x, and x is a factor or divisor of y.
Prime	An integer n is prime if and only if $n>1$, and the only positive integers that divide n are 1 and n.
Composite	An integer n is composite if and only if $n>1$, and there is an integer m such that $1<m<$ n and m divides n .
Rational	A number r is rational if there exist integers x and y such that $y \neq 0$ and $r=x / y$.
ZERO	0 is rational. For example if x $=0$ and $y=1$, then $y \neq 0$ and $\mathrm{x} / \mathrm{y}=0 / 1=0$.

By mkenny

cheatography.com/mkenny/

METHOD DEFINITIONS

constructive proof of existence
A proof that shows that an existential statement is true.
proof by exhaustion

Allowed assumptions in proofs

The rules of algebra.
For example if x, y, and z are real numbers and $x=y$, then $x+z=y+z$.

The set of integers is closed under addition, multiplication, and subtraction. n other words, sums, products, and differences of integers are also integers.

Every integer is either even or odd.
This fact is proven elsewhere in the material.

If x is an integer, there is no integer between x and $\mathrm{x}+1$.

In particular, there is no integer between 0 and 1.

The relative order of any two real numbers.

$$
\text { For example } 1 / 2<1 \text { or } 4.2 \geq 3.7
$$

The square of any real number is greater than or equal to 0 .

This fact is proven in a later exercise.

Choosing a Method

Not published yet.
Last updated 15th February, 2023.
Page 1 of 1 .

Common keywords and phrases in proofs

Thus, therefore then, hence, it follows that A statement that follows from the previous statement(s)
$e x . n$ and m are integers. Therefore, $n+m$ is also an integer.
Let, suppose
Introduce a new variable
ex. "Let x be a positive integer" "Suppose
that x is a positive integer"

Since

If a statement depends on a fact that appeared earlier in the proof or in the assumptions of the theorem, it can be helpful to remind the reader of that fact before the statement.
$e x$. "Since $x>0$ and $y>z$, then $x y>x z$."

By definition

A fact that is known because of a definition ex. "The integer m is even. By definition, m $=2 k$ for some integer k."

By assumption

A fact that is known because of an assumption
ex. "By assumption, x is positive. Therefore $x>0$."
"gives" and "yields"
useful to say that one equation or inequality follows from another provides clarity to justify algebraic steps *ex. Multiplying both sides of the inequality $x>y$ by 2 gives $2 x>2 y$.
Substituting $m=2 k$ into $m 2$ yields $(2 k) 2^{*}$
Since $z>0$, we can multiply both sides of the inequality $x>y$ by z to get $x z>y z$.

Sponsored by Readable.com

Measure your website readability!
https://readable.com

