

SECTION 1

C, Fields, Lists, Fⁿ, Vector Spaces

Definition of complex numbers (n∈C)

C = { a+bi : a,b ∈ **R**}

addition in C (a+bi) + (c+di) = (a+c) + (b+d)i

multiplication in C (a+bi)(c+di) = (ac-bd) +

(ad+bc)i

Properties of Fields

commutativity a+b = b+a \land ab = ba \forall a,b \in F

associativity (a+b)+c = a+(b+c) \land (ab)c = a(bc) \forall a,b,c \in F

identities $c+0 = c \land 1c = c \ \forall c \in F$

additive inverse $\forall a \in F \exists b \in F : a+b = 0$

multiplicative inverse $a \in F$, $a \neq 0$, $\exists b \in F$: a+b=0

distributive property $c(a+b) = ca + cb \ \forall a,b,c \in F$

Definition of list L with length n

 $n \in \mathbb{N}$, L : { 1,2,...,n } \rightarrow Elements

 $L = (x_1,...,x_n)$

Definition of Fn

$$F^n = \{ (x_1,...,x_n) : x_j \in F \text{ for } j = 1,...,n \}$$

addition in F^{n} (x₁,...,x_n) + (y₁,...,y_n) =

 $(x_1+y_1,...,x_n+y_n)$

zero vector 0 = (0,...,0)

additive inverse For $x \in F^n$, $-x \in F^n = (-1)^n$

x₁,...,-x_n)

scalar multiplication in F^n $c \in F$, $c(x_1,...,x_n)$

 $= (cx_1,...,cx_n)$

Definition of addition and scalar multiplication

addition on a set $V + : (u, v \in V) \rightarrow u + v$

scalar multiplication on a set V^* : (c $\in F$, $v \in$

 $V) \rightarrow c V$

Defintion of Vector Space

Vector Space = V + (+) + (*)

commutativity u+v=v+u

associativity $(u+v)+w=u+(v+w) \land (ab) v = a(b v)$

additive identity $\exists 0 \in V : v+0 = v$

additive inverse $\forall v \in V, \exists w \in V : v+w=0$

multiplicative identity 1v = v

distributive property $a(v+w) = av + aw \forall a \in$

 $v \in V$ = vector v point

C

By mk_mk_mk

cheatography.com/mk-mk-mk/

Not published yet. Last updated 15th November, 2024. Page 2 of 2. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com