Cheatography

Hybridization and MO Theory Cheat Sheet by mjb via cheatography.com/128288/cs/25147/

Hybridizat	lion
Formal Charge	FC = (group #) - (loan pairs + bonds)
Bond Enthalpy	Δ Hrxn = (sum of bonds broken) - (sum of bonds formed)
	Weaker bonds broken provide more exothermic reactions. Weaker product bonds make for a less exothermic reaction.
Bond Order and Length	Shorter bond length = greater bond order
	Single bonds are the longest and the weakest
	Triple bonds are the shortest and the strongest
	Non-integer bond order indicates resonance
Non- polar covalent bonds	ex: CI-CI
	small energy difference in electronegativity
Polar Covalent Bonds	ex: H-Cl
	medium energy difference
lonic Bonds	ex: Li-Cl
	large energy difference (over 1.7)
Average Bond Order	ABO = (# of bonds in the molecule) ÷ (# of resonance structures)

MO Theory

MO diagram for F2, O2, Ne2, and all other molecules

MO Theory	
Bond Order	(bonds-antibonds) ÷ 2
Bonds	σ, π
Anti-Bonds	σ, π
Sigma Bond	hybridized \
Pi Bond	unhybridized p orbital \
Loan Pair	Spin Paired \> X

VSEPR

VSEPR			
Number of Electrons	Electron Geometry	Atoms + Loan Pairs	Molecular Geometry
2	linear	2+0	linear
3	trigonal planar	3+0	trigonal planar
		2+1	bent
4	tetrah- edral	4+0	tetrah- edral
		3+1	trigonal pyramidal
		2+2	bent
5	trigonal bipyra- midal	5+0	trigonal bipyra- midal
		4+1	see-saw
		3+2	T-shaped
		2+3	linear
6	octahedral	6+0	octahedral

VSEPR (cont)

5+1	square pyramidal	
4+2	square planar	

Polarity	
Requir-	Bonds must be polar
ements for a	
Polar	
Molecule	
	The molecule cannot have
	symmetry
	A bond is polar if one side
	is more electronegative
	than the other

MO Theory

Diagram for B2, C2, and N2

The Born-Haber Cycle			
Sublimation	Na (s) + 1/2 Cl2 (g)> Na (g) + Cl (g)	+107.32 kJ	
CI-CI bond energy	Na (g) + Cl (g)> Na (g) + 1/2 Cl2 (g)	+121.68 kJ	
ionization energy of sodium	Na (g) + 1/2 Cl2 (g)> Na+(g) + Cl (g) + e-	+496 kJ	
Electron Affinity of Cl	Na+(g) + Cl (g) + e> Na+ (g) + Cl- (g)	-349 kJ	
Lattice Energy of NaCl	Na+ (g) + Cl- (g) - -> NaCl (s)	-786 kJ	

By mjb cheatography.com/mjb/ Published 9th November, 2020.

Last updated 9th November, 2020. Page 1 of 2. Sponsored by **Readable.com** Measure your website readability!

https://readable.com

Cheatography

Sigma and Pi Bonds			
Valence Bond Theory	When two atoms are in close proximity to one another, they arrange themselves at the lowest possible energy		
Sigma bonds	Formed by end-on overlap of orbitals along the internuclear axis		
	the electron density is highest right between the two atoms		
Pi bonds	Formed by side on overlap of orbitals		
	there is no electron density between the atoms		
	Weaker than sigma bonds		
Valence electron pairs	Electron Geometry	Hybridization	
2	linear	sp	
3	trigonal planar	sp2	
4	tetrahedral	sp3	
5	trigonal bipyramidal	sp4	
6	octahedral	sp5	
Single Bonds	one sigma bond		
Double Bonds	one sigma, one pi bond		
Triple Bonds	one sigma, two pi bonds		

By **mjb**

cheatography.com/mjb/

Published 9th November, 2020. Last updated 9th November, 2020. Page 2 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com