Gas Laws	
Boyle's Law	$\begin{aligned} & \text { Pinitial_vinitial_Pf- } \\ & \text { inalv(final } \end{aligned}$
Charles's Law	$V^{i} \div T^{i}=V^{\dagger} \div T^{\text {f }}$
Combined Gas Law	$P^{i} V^{i} \div T^{i}=P^{f} V^{f} \div T^{f}$
Avogadro's Law	$V^{i} \div n^{i}=V^{f} \div n^{f}$
Ideal Gas Law	$\mathrm{PV}=\mathrm{nR}$ T
Dalton's Law of Partial Pressure	$\begin{aligned} & P^{\text {total }}=P^{1}+P^{2}- \\ & +P^{3} \ldots \end{aligned}$

Dalton's Law of Partial Pressure

Partial Pressure	Pgas (atm)=(total pressure x moles $\left.{ }^{\mathrm{gas}}\right) \div$ total moles
PP when volumes are different	$\begin{aligned} & \mathrm{P}^{\text {total }}=\mathrm{P}^{1}\left(\operatorname{atm} \times \mathrm{V}^{1} \div \mathrm{V}^{\text {to- }}\right. \\ & \text { tal })+\mathrm{P}^{2}\left(\mathrm{atmxV}^{2} \div \mathrm{V}^{\text {to }}\right. \\ & \text { tal) } . . . \end{aligned}$
Mole fraction	moles of gas \div total moles
Wet Gas	Pwet gas $=$ Ptotal_ ${ }^{\text {P }}$ H2O
	then use $P V=n R T$ to solve for variables

Real Gases

Van der	$\mathrm{P}=[(\mathrm{nRT}) \div(\mathrm{V}-\mathrm{nb})]-\left[\left(\mathrm{a}^{*} n^{2}\right)-\right.$
waal's	$\left.\div\left(\mathrm{V}^{2}\right)\right]$
equation	

When a gas with a larger "a" value
comparing will require the largest real gases correction to account for intermolecular forces
a gas with a smaller "b" value will behave most ideally at high pressures
If Vdw 's pressure is lower than the ideal pressure, attractive forces dominate

If Vdw's pressure is higher than ideal pressure, repulsive forces dominate

By mjb

cheatography.com/mjb/

Real Gases (cont)

Real	attractive forces between
Gas	molecules cause a decrease in
Behavior	pressure
	As molecules increase in size
	deviations from ideal behavior
	become apparent at relatively
	HIGH temps
	In general, most gases behave
	most ideally at HIGH temps and
	LOW pressures

Pressure Units and Conversions	
$1 \mathrm{~atm}=\quad$	$1 \mathrm{~atm}(\mathrm{R}=.08206)$
	$760 \mathrm{mmHg}(\mathrm{R}=62.364)$
	760 torr
	$1.013 \times 10^{5} \mathrm{~Pa}$
	101.3 kPa
	29.92 inches Hg
	14.69 psi
	1.01325 bar

Stoichiometry and Gases	
Mole ratio $=$ Volume ratio	$2 A+3 B=A B$
	$2 A: 3 B$
	$2 \mathrm{~mL} \mathrm{~A}: 3 \mathrm{~mL} \mathrm{~B}$

Kinetic Molecular Theory	
Temper ature	If temperature is increased, Pressure and KE increase by a factor of $T^{f} \div T^{i}$ and rms increases by a factor of $\sqrt{ } \mathrm{T}^{\mathrm{f}} \div \mathrm{T}^{\mathrm{i}}$
Volume	If volume is increased, Pressure increases by a factor of $\mathrm{V}^{\mathrm{i}} \div \mathrm{V}^{f}$ while KE and rms increase by a factor of 1 (because they are not affected))
Moles	If moles are increased, pressure increases by a factor of $n^{\dagger} \div n^{i}$, while KE and rms increase by a factor of 1 (no change)

Published 23rd November, 2020.
Last updated 23rd November, 2020.
Page 1 of 1 .

Using Ideal Gas Law to Calculate Gas Properties

Ideal Gas Law	$\mathrm{PV}=\mathrm{nRT}$
STP	0 degrees celcius, 273 degrees Kelvin, $1 \mathrm{~atm}, 22.4 \mathrm{~L} / \mathrm{mol}$
Density	$\mathrm{d}=\mathrm{MP} \div \mathrm{RT}$ where M is molar mass
Volume	When not given volume, but told to assume ideal gas behavior, use $\mathrm{V}=1 \mathrm{~L}$

Diffusion and Effusion	
$\mathrm{G} 1=\mathrm{gas} 1$	G2=gas 2
Average Kinetic Energy	$\begin{aligned} & \mathrm{KE}^{\mathrm{G} 1}=\mathrm{KE}{ }^{\mathrm{G} 2} \text { when } T^{\mathrm{G} 1}=- \\ & \mathrm{T}^{\mathrm{G} 2} \end{aligned}$
Molecular Speed	$\sqrt{ } u^{2}=\sqrt{ } 3 R T \div M$ where M is the molar mass
	$\begin{aligned} & \sqrt{ } u^{2} G 1 \div \sqrt{ } u^{2} G 2=\sqrt{ } M^{G 2} \div \\ & \sqrt{ } M^{G 1} \end{aligned}$
Rate	$\begin{aligned} & d / d x^{G 1} \div d / d x x^{G 2}=\sqrt{ } M^{G 2} \\ & \div \sqrt{ } M^{G 1} \end{aligned}$
Time	$t^{G 2} \div t^{G 1}=\sqrt{ } M^{G 2} \div \sqrt{ } M^{G 1}$

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

