

Chapter 9 - Gases Cheat Sheet by mjb via cheatography.com/128288/cs/25374/

PinitialVinitial=Pf-inalVfinal
$V^i \dot{\div} T^i = V^f \dot{\div} T^f$
$P^iV^i{\div}T^i=P^fV^f{\div}T^f$
$V^i \dot{\div} n^i {=} V^f \dot{\div} n^f$
PV=nRT
$P^{\text{total}} = P^1 + P^2 - P^3$

Dalton's Law of Partial Pressure		
Partial	P ^{gas} (atm)=(total pressure	
Pressure	x moles ^{gas})÷total moles	
PP when	$P^{total}=P^{1}(atmxV^{1} \div V^{to-})$	
volumes are	tal)+P ² (atmxV ² ÷V ^{to-}	
different	tal)	
Mole fraction	moles of gas ÷ total	
	moles	
Wet Gas	P ^{wet gas} =P ^{total} -P ^{H2O}	
	then use PV=nRT to	
	solve for variables	

Real Gases	
Van der waal's equation	$P=[(nRT) \div (V-nb)] - [(a^*n^2) - \div (V^2)]$
When comparing real gases	a gas with a larger "a" value will require the largest correction to account for intermolecular forces
	a gas with a smaller "b" value will behave most ideally at high pressures
	If Vdw's pressure is lower than the ideal pressure, attractive forces dominate
	If Vdw's pressure is higher than ideal pressure, repulsive forces dominate

Real Gases (cont)	
Real	attractive forces between
Gas	molecules cause a decrease in
Behavior	pressure
	As molecules increase in size deviations from ideal behavior become apparent at relatively HIGH temps
	In general, most gases behave most ideally at HIGH temps and LOW pressures

Pressure Units and Conversions		
1 atm=	1 atm (R= .08206)	
	760 mmHg (R= 62.364)	
	760 torr	
	1.013x10 ⁵ Pa	
	101.3 kPa	
	29.92 inches Hg	
	14.69 psi	
	1.01325 bar	

Stoichiometry and Gases	
Mole ratio = Volume ratio	2A+3B=AB
	2A:3B
	2mL A:3mL B

Kinetic Molecular Theory

by a factor of √T ^f ÷T ⁱ Volume If volume is increased, Pressure increases by a factor of V ⁱ ÷V ^f while KE and rms increase by a factor of 1 (because they are not affected)) Moles If moles are increased, pressure increases by a factor of n ^f ÷n ⁱ , while KE and rms increase by a		
increases by a factor of $V^i_{\div}V^f$ while KE and rms increase by a factor of 1 (because they are not affected)) Moles If moles are increased, pressure increases by a factor of $n^f_{\div}n^i$, while KE and rms increase by a	•	Pressure and KE increase by a factor of $T^f \div T^i$ and rms increases
increases by a factor of $n^f \div n^i$, while KE and rms increase by a	Volume	increases by a factor of $V^i \div V^f$ while KE and rms increase by a factor of 1 (because they are not
tactor of 1 (no change)	Moles	

Using Ideal Gas Law to Calculate Gas Properties	
ldeal Gas Law	PV=nRT
STP	0 degrees celcius, 273 degrees Kelvin, 1 atm, 22.4 L/mol
Density	d=MP÷RT where M is molar mass
Volume	When not given volume, but told to assume ideal gas behavior, use V=1L

Diffusion and Effusion	
G1=gas 1	G2=gas 2
Average Kinetic Energy	$KE^{G1} = KE^{G2}$ when $T^{G1} = -T^{G2}$
Molecular Speed	$\sqrt{u^2} = \sqrt{3RT \div M}$ where M is the molar mass
Rate	$d/dx^{G1} \div d/dx^{G2} = \sqrt{M^{G2}}$ $\div \sqrt{M^{G1}}$
Time	$t^{G2} \div t^{G1} = \sqrt{M^{G2}} \div \sqrt{M^{G1}}$

By **mjb** cheatography.com/mjb/

Published 23rd November, 2020. Last updated 23rd November, 2020. Page 1 of 1. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com