Cheatography

Chapter 9 - Gases Cheat Sheet by mjb via cheatography.com/128288/cs/25374/

Gas Laws	
Boyle's Law	P ^{initial} V ^{initial} =P ^{f-} inalV ^{final}
Charles's Law	$V^i \!\div\! T^i = V^f \!\div\! T^f$
Combined Gas Law	$P^iV^i{\div}T^i=P^fV^f{\div}T^f$
Avogadro's Law	$V^i{\div}n^i{=}V^f{\div}n^f$
Ideal Gas Law	PV=nRT
Dalton's Law of Partial Pressure	P ^{total} =P ¹ +P ² - +P ³

Dalton's Law of	Partial Pressure
Partial Pressure	P ^{gas} (atm)=(total pressure x moles ^{gas})÷total moles
PP when volumes are different	$\begin{split} & P^{total} = P^1(atmxV^1 \div V^{to-} \\ & \overset{tal}{}) + P^2(atmxV^2 \div V^{to-} \\ & \overset{tal}{}) \dots \end{split}$
Mole fraction	moles of gas ÷ total moles
Wet Gas	P ^{wet gas} =P ^{total} -P ^{H2O}
	then use PV=nRT to solve for variables

Real Gases	
Van der waal's equation	P=[(nRT)÷(V-nb)] - [(a*n ²)- ÷(V ²)]
When comparing real gases	a gas with a larger "a" value will require the largest correction to account for intermolecular forces
	a gas with a smaller "b" value will behave most ideally at high pressures
	If Vdw's pressure is lower than the ideal pressure, attractive forces dominate
	If Vdw's pressure is higher than ideal pressure, repulsive forces dominate

Real Gases (cont)

	(eem,
Real Gas Behavior	attractive forces between molecules cause a decrease in pressure
	As molecules increase in size deviations from ideal behavior become apparent at relatively HIGH temps
	In general, most gases behave most ideally at HIGH temps and LOW pressures
Durante	
Pressure	Units and Conversions
1 atm=	1 atm (R= .08206)

1 atm=	1 atm (R= .0820	06)
	760 mmHg (R=	62.364)
	760 torr	
	1.013x10 ⁵ Pa	
	101.3 kPa	
	29.92 inches H	g
	14.69 psi	
	1.01325 bar	
Stoichiome	etry and Gases	
Mole ratio =	Volume ratio	2A+3B=AB
		2A:3B

2mL A:3mL B

Kinetic Molecular Theory	
Temper ature	If temperature is increased, Pressure and KE increase by a factor of $T^f \div T^i$ and rms increases by a factor of $\sqrt{T^f \div T^i}$
Volume	If volume is increased, Pressure increases by a factor of $V^i \div V^f$ while KE and rms increase by a factor of 1 (because they are not affected))
Moles	If moles are increased, pressure increases by a factor of n ^f ÷n ⁱ , while KE and rms increase by a factor of 1 (no change)

By **mjb** cheatography.com/mjb/ Published 23rd November, 2020. Last updated 23rd November, 2020. Page 1 of 1.

Using Ideal Gas Law to Calculate Gas		
Properties		
Ideal	PV=nRT	
Gas		

Law	
STP	0 degrees celcius, 273 degrees Kelvin, 1 atm, 22.4 L/mol
Density	d=MP÷RT where M is molar mass
Volume	When not given volume, but told to assume ideal gas behavior, use V=1L

Diffusion and Effusion	
G1=gas 1	G2=gas 2
Average Kinetic Energy	$KE^{G1} = KE^{G2}$ when $T^{G1} = -T^{G2}$
Molecular Speed	$\sqrt{u^2} = \sqrt{3RT}$ where M is the molar mass
	$\sqrt{u^2G1} \div \sqrt{u^2G2} = \sqrt{M^{G2}} \div \sqrt{M^{G1}}$
Rate	
Time	$t^{G2} \div t^{G1} = \sqrt{M^{G2}} \div \sqrt{M^{G1}}$

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com