\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{MJ McGiver} \pdfinfo{ /Title (115-114-finance-fundamentals-chpt4-6.pdf) /Creator (Cheatography) /Author (MJ McGiver) /Subject (115.114 Finance Fundamentals. Chpt4\&6 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{679996} \definecolor{LightBackground}{HTML}{F5F8F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{115.114 Finance Fundamentals. Chpt4\&6 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{MJ McGiver} via \textcolor{DarkBackground}{\uline{cheatography.com/213568/cs/46481/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}MJ McGiver \\ \uline{cheatography.com/mj-mcgiver} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 2nd June, 2025.\\ Updated 2nd June, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Chpt4. TVM-Single Payments}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Time Value of money}} & {\emph{Individuals prefer to receive a dollar today to receiving that same dollar promised in a year's time.}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 5 (+ 0) % Row 2 \SetRowColor{LightBackground} {\bf{Interest}} & {\emph{The cost of funds to a borrower or part of the return for a lender or investor}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} {\bf{Mortgage}} & {\emph{recover money by selling property}} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Term Loan}} & {\emph{bank loan with maturity\textasciicircum{}due date\textasciicircum{}}} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.1 Simple Interest \& Future Value}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Future Value}} & {\emph{amount received later}}; cash value of investment at future date: `FV=P(1+rn)` \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Simple Interest}} & {\emph{Interest calculated on the original amount}}: `I=(P)(r)(n)` \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{Money Markets}} & {\emph{short-term debt markets}}: companies can borrow/ invest in the short-term. \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} {\bf{Formula}} & `FV = P(1 + rn)` \tn % Row Count 10 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.4 cm} x{5.6 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.2 Simple Interest \& Present Value}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Present Value}} & {\emph{amount today}}: needed cash today, to yield a particular value at future. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Discounts}} & {\emph{to find the present value of future amount}}: inverse for compounding interest. \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{Formula}} & `PV = FV/(1+rn)` \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Working out/ Calculating how much the money we expect to receive in the future is worth today.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.3 Compound Interest \& FV}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Compounded Interest}} & {\emph{Interest is stacking}}: It is then added to the principal \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Compounding}} & {\emph{Process of finding future amounts where interest is paid on interest already earned.}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Opportunity Cost}} & {\emph{best market yield achieve through alternative course of action}}: Market Yield is often benchmarked for opportunity costs \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} {\bf{Formula}} & `FV = PV(1+r)\textasciicircum{}n\textasciicircum{}` \tn % Row Count 13 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Working out/ calculating future value through interest for each period (plus any interest), then added to the principal.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.16 cm} x{5.84 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.4 PV of a single payment}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Discounting}} & {\emph{The process of finding current amounts by the process of present value.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Formula}} & `PV = FV / (1+r)\textasciicircum{}n\textasciicircum{}` \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Formula2}} & `PV = FV x (1+r)\textasciicircum{}-n\textasciicircum{}` \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.5 Compounding frequency}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Coupon}} & {\emph{Interest paid, based on a percentage of a bond's face value.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Zero- coupon Bond}} & {\emph{single-payment}}: no interest payment during its lifetime since interest is included with the repayment of principal at maturity. \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{Maturity}} & {\emph{Deadline}}:The date when security will be payed. \tn % Row Count 10 (+ 2) % Row 3 \SetRowColor{white} {\bf{Formula}} & `FV = PV x (1 + r/m)\textasciicircum{}m x n\textasciicircum{}` \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Formula2}} & `PV = FV / (1 + r/m)\textasciicircum{}m x n\textasciicircum{}` \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{When compounding period per year is increased by {\emph{semi-annually, quarterly, monthly or daily.}} \newline \newline PV formula can be used to calculate the current value of a zero-coupon bond.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.48 cm} x{5.52 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.6 Continuous compounding/ discounting}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Formula}} & `FV = PV (PV x e\textasciicircum{}r x n\textasciicircum{})` \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{or}} & `FV = PVe\textasciicircum{}rn\textasciicircum{}` \tn % Row Count 2 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{When compounding frequency is increased to a very large number of (infinity). \newline \newline Where e is constant, e = 2.718} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.52 cm} x{4.48 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.7 Nominal \& Effective Interest Rates}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Nominal Rate}} & {\emph{contractual rate, ignores compounding. includes inflation}}: quoted rate \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Effective Rate}} & {\emph{actual rate, accounts compounding. includes adjustments}}: adjustments to nominal rate for the frequency of compounding. \tn % Row Count 10 (+ 6) % Row 2 \SetRowColor{LightBackground} {\bf{Annual Percentage Rate (APR)}} & {\emph{contractual rate, ignores compounding. when short-term rates are annualized }} \tn % Row Count 14 (+ 4) % Row 3 \SetRowColor{white} {\bf{Rate of Return}} & {\emph{rate of profit/ loss from investment}} \tn % Row Count 16 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Formula}} & `r\textasciitilde{}e\textasciitilde{} = (1 + r/m)\textasciicircum{}m\textasciicircum{} - 1` \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.64 cm} x{5.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{4.8 Unknown Interest Rate}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Formula}} & `r = (FV/PV)\textasciicircum{}1/n\textasciicircum{} - 1` \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{FV and PV is given, but find interest rate.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.64 cm} x{5.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Chpt. 6 Risk and Return}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Risk-free assets}} & {\emph{assets that do not have risk}}: e.g. Treasury Bills and Government Bonds. \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.12 cm} x{4.88 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.1 Two components of a return.}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Nominal Interest Rates}} & {\bf{Borrower's POV}}: costs they incur in order to use the funds of investors. \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Nominal Returns}} & {\bf{Investors (Lender)'s POV}}: Compensates the investor for deferring consumption. \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{These terms are made up of two components,} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} {\bf{Real Interest Rate}} & {\emph{Rate with no inflation or uncertainty}} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Inflation}} & {\emph{Increase level of prices from supply and demand.}} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{The real interest rate}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{The interest rate adjusted for inflation, showing the true cost of borrowing or the real yield of an investment. \newline % Row Count 3 (+ 3) {\emph{Real Interest Rate = Nominal IR + Expected Inflation}}% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Expected Inflation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Inflation may be due to government policies, oil price rises, world events, etc. \newline % Row Count 2 (+ 2) Investors require compensation for expected future inflation over the period of the loan or investment, and that historical rates of inflation are irrelevant. \newline % Row Count 6 (+ 4) {\bf{Consumer Price Index (CPI)}} measures changes in the general level of prices each quarter.% Row Count 8 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.2 Nominal Interest Rate}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{Fisher Equation}} by Irving Fisher} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{Formula: Nominal Interest Rate}} & `NiR = {[}(1 + Real interest rate) x (1 + \% Expected inflation){]} - 1` \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Formula: Real interest rate}} & `RiR = (1 + NiR / 1 + \% Expected Inflation) - 1` \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} {\bf{Risk Premium}} & {\emph{Additional return investors require for investing in risky assets}} \tn % Row Count 12 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.96 cm} x{5.04 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.3 Shaped of Yield Curves}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Yield Curves}} & {\emph{Depicted in graphical form}} which presents the relationship between time to maturity and percentage yield, know as {\bf{Term structure of interest rates}}. \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} {\bf{Normal yield curve}} & {\emph{upward-sloping curve}}: short-term yields are low, will rise with longer maturities. \tn % Row Count 11 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Inverse yield curve}} & {\emph{downward-sloping}}: short-term yields are high, yields on long-term maturities fall over time. \tn % Row Count 15 (+ 4) % Row 3 \SetRowColor{white} {\bf{Flat yield curve}} & {\emph{straight line}}: little change in interest rates across time periods. \tn % Row Count 18 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{Humped yield curve}} & Short-term securities are higher, longer-term bonds are lower. \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.4 Risky Assets}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Risk}} & {\emph{The possibility of loss:}} the uncertainty of receiving the expected returns because a borrower may not be able to repay the principal on fixed-interest securities when required. \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} {\bf{Formula: Nominal Return}} & Nominal Return = Risk-free return + Risk Premium \tn % Row Count 10 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{{\bf{5 Risk components}}} \tn % Row Count 11 (+ 1) % Row 3 \SetRowColor{white} {\bf{Business Risk}} & {\emph{Fluctuations in cash inflows, notably sales.}} \tn % Row Count 13 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Financial Risk}} & {\emph{Amount of debt used to fund a firm's operations:}} high debt levels may threaten the firm's ability to pay dividends. \tn % Row Count 18 (+ 5) % Row 5 \SetRowColor{white} {\bf{Liquidity Risk}} & {\emph{The risk an investor holding equity in a company may be unable to sell them to another investor:}} chances of selling investments without losing a lot of money. \tn % Row Count 25 (+ 7) % Row 6 \SetRowColor{LightBackground} {\bf{Exchange rate risk}} & {\emph{The chances of losing money from changes in offshore currencies relative to the local currency:}} Adverse movements in exchange rates can erode the level of return the investor expects to receive. \tn % Row Count 34 (+ 9) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.2 cm} x{4.8 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.4 Risky Assets (cont)}} \tn % Row 7 \SetRowColor{LightBackground} {\bf{Country Risk}} & {\emph{Uncertainty of return from investments in another country:}} level of risk differs from country to country. \tn % Row Count 5 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{The greater the risk, the higher the premium to compensate.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.44 cm} x{4.56 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.5 Measuring historical risk and return}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Ex Ante}} & {\emph{before the event}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} {\bf{Ex Post}} & {\emph{after the event}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{Holding Period}} & {\emph{the length of time an investment is owned}} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} {\bf{Holding Period Yield (HPY)}} & {\emph{investment's percentage return over the period it was owned.}} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.6 Standard deviation as a measure of risk}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Variance}} & {\emph{measures how far each return is from the mean (average) of all returns.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Standard Deviation}} & {\emph{measures the variability of a set of values}} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.8 cm} x{5.2 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.7 Standard deviation as a measure of risk}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Variance}} & {\emph{measures how far each return is from the mean (average) of all returns.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{} \tn % Row Count 3 (+ 0) % Row 2 \SetRowColor{LightBackground} {\bf{Standard Deviation}} & {\emph{measures the variability of a set of values}} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{6.8 Risk averse investors' investment rules}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Investment rule 1:}} If two investment choices have the same expected returns, select the one with the lower expected risk. \newline % Row Count 3 (+ 3) {\bf{Investment rule 2:}} If two investment choices have similar risk profiles, select the one with the higher expected return. \newline % Row Count 6 (+ 3) An investor's tolerance for and attitude towards risk matters. \newline % Row Count 8 (+ 2) In a world fraught with uncertainty and risk, diversification is the key.% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.72 cm} x{5.28 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.9 The benefit of diversification}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Diversification}} & {\emph{The practice of spreading wealth over a variety of different assets.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} & Diversification works to reduce risk (variability), because it is unlikely that all investment assets will perform in exactly the same way. \tn % Row Count 9 (+ 6) % Row 2 \SetRowColor{LightBackground} {\bf{Diversify}} & {\emph{Place funds in a range of assets in order to spread risk:}} objective of investments. \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} {\bf{Unsystematic Risk}} & {\emph{Risk that can be minimized by diversification}} \tn % Row Count 15 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Systematic Risk}} & {\emph{Non-diversifiable risk:}} pertaining to uncertainty surrounding future economic conditions that affects all companies. e.g. war, international incidents, and inflation. \tn % Row Count 22 (+ 7) % Row 5 \SetRowColor{white} & {\emph{The higher the systematic risk, the higher the return investors will be compensated.}} \tn % Row Count 26 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Some investments will perform well when others are performing poorly, so that the returns on assets will not move in the same direction at the same time.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{6.10 CAPM}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Capital Asset Pricing Model (CAPM)}} & {\emph{calculates the required rate of return of risk assets.}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Market Risk Premium (MRP)}} & {\emph{extra return investors require to compensate them for investing in the market portfolio.}} \tn % Row Count 8 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}